

MOHE Robotics and AI R&D Consortium (MRRDC) in Support of the National Robotics Malaysia (RM) Project

29 March 2018

Dewan Teknovasi, Innovation and Commercialisation Centre (ICC)

Universiti Teknologi Malaysia, Skudai

Agenda

- Why MRRDC
 - End game: Building a Sustainable Robotics
 Industry in Malaysia
 - The Importance of Targeted R&D
 - The Role of MRRDC
 - Knowledge Building
 - Technology Development
- Conclusion: The Need to Build a Viable Robotics Ecosystem

Agenda

- Why MRRDC
- The Need to Build a Robust Robotics Ecosystem

Why MRRDC?

- End game: Building a Sustainable Robotics Industry in Malaysia
- The Importance of Targeted R&D
- Why a Consortium?
- The Role of MRRDC
 - Knowledge Building
 - Technology Development

1. The Potential

- The Robotics Industry (current: Mechanisation)
 - Automation Robotics → future:?) has a huge potential:
 - To help overcome Malaysian Industry challenges and
 - ii. To be developed to became a Major Contributor to the Malaysian Economy
- With the advent of Industry 4.0, Robotics (Autonomous Robots) has a special place in the future of Industry.

2. The Challenge

- i. Why then although there is an Apparent/ Obvious need for a Robotics Solution to alleviate some of the challenges faced by Malaysia and the Malaysian Industry, the Local Malaysian Robotics Industry has not expanded in a big way?
- ii. How then to develop a Sustainable and Global Malaysian Robotics Industry that will contribute to National Socio-Economic Development

Why has the Local Robotics Industry not Expanded in a Big Way?

- At Industry Level:
 - Matching Supply with Demand
 - ii. Completing the Value-Chain
- At National Level:
 - iii. Building a Sustainable Robotics Ecosystem
 - Quad Helix Model (Government, Private Sector, Knowledge Sector, Public/NGO)
 - iv. Leadership Role of Government

The need to Match Supply with Demand

Matching Sustainable Demand with Reliable Supply

Developing Sustainable Demand and Reliable Supply

Developing Reliable Supply		
No.	Program	Output
1	Vendor Development Program	 New Robotics Vendors Upskilled Existing Robotics Vendor
2	Technology Development Program	 New Robotics Technology Enhanced Robotics Technology
3	Human Capital Development Program	Expertise forUsersSuppliersof RobticsTechnology

Developing Sustainable Demand		
No.	Program	Output
4	Industry Development Program	More Users (Industry Players) use Robotics Technology
		More Robotics Vendors(SI, Suppliers) operating at Local, Regional and International levels

Completing the Robotics Value-Chain

Reliable and Robust Competency in Robotics:

Why MRRDC?

- End game: Building a Sustainable Robotics Industry in Malaysia
- The Importance of Targeted R&D
- Why a Consortium?
- The Role of MRRDC
 - Knowledge Building
 - Technology Development

Targeted R&D

- Develop Local Robotics R&D Capacity
 - To Address the Current needs of Industry
 - To Support the Development and Sustainability of a Local Robotics Industry
 - Enhance the Commercialisation of Local R&D

Why MRRDC?

- End game: Building a Sustainable Robotics Industry in Malaysia
- The Importance of Targeted R&D
- Why a Consortium?
- The Role of MRRDC
 - Knowledge Building
 - Technology Development

MOHE Robotics R&D Consortium

- Not a Physical Centre but a Consortium of Associated Institutions
- "One Stop Referral" for Robotics related Activities in MOHE
- Collects, Coordinates and Disseminate Information
- Manages Resources where appropriate
- Be Part of the National Robotics Malaysia Project

Coordinating MOHE's Resources

- In IPTAs, Politenik and Others
- Resources such as
 - Robotics Knowledge, Skills & Competency
 - R&D COEs, Skills and Resources
 - Graduates in Robotics related areas
 - Laborotary Facilities and Service COEs in Robotics
- These Resources could be used to Develop
 - Human Capital Dev. Program at all levels
 - Technology Development Program
 - Entrepreneur/ Vendor Development Program
 - Provide Resources to help develop a Robot Manufacturing/Fabrication/Maintenance Program

Why MRRDC?

- End game: Building a Sustainable Robotics Industry in Malaysia
- The Importance of Targeted R&D
- Why a Consortium?
- The Role of MRRDC as Part of RM Project
 - Knowledge Building
 - Technology Development
 - Human Resource Development

Robotics Malaysia (RM) Project

- To realise a Sustainable and Global Malaysian Robotics Industry
- To build The Quad-Helix: Government, Industry, NGO/Public and Knowledge Sector
- Government to take up Leadership
- Leading the Current Protem Committee:
 - Government and GLCs (MTDC, Cyberview)
 - Industry (TCMyRO Sdn. Bhd., Siasun(China))
 - NGO (MyRAS)
 - Knowledge Sector (UTM)

Developing a Sustainable and Global Malaysian Robotics Industry

- Sustainable
 - Enough Industry Demand
 - Enough Supply of
 - Vendors
 - Technology
 - Human Capital
 - Growth/Expansion and Profit
- Global
 - Ultimately the Local market is Limited. Therefore the need to Expand
 - Local → Regional → Global

Quad-Helix Model of the Malaysian Robotics Ecosystem

Leadership Role Of the Government

Government has to Play the Crucial Role in Providing:

- 1. Leadership: Directions and Plans, Establishing the Robotics Innovation Ecosystem
- 2. Policies: In Support of and to Implement Directions and Plans
- 3. Support: Incentives, Institutions and Infrastructure

Input, Output and Activities of RM

MOHE Contribution: Playing Our Role as the Knowledge Sector in the Quad-Helix

Role of the Knowledge Sector

- Supplies Knowledge and to enable
 - Development of New Technology
 - Upgrade Current Technology
 - Facilitate Technology Transfer

Supplies Human Capital For The Robotics Industry

- Skilled Workers for Robotics Users
- Robotics Technopreneurs to fulfill the requirement of the Industry
- Researchers
- Innovators

MOHE's Role

Linking MRRDC with RM Project

- MRRDC could provide critical input to the National Robotics Malaysia Project
 - Human Capital Development Program
 - Robotics Vendor Development Program
 - Robot Manufacturing Program
- RM in turn will provide MRRDC with
 - Current & Future Requirements
 - Funding
 - Directions, Policies and Standards
- Government Leadership Role in guiding the evolution of the Robotics Industry could be done more efficiently

Agenda

- Why MRRDC
- The Need to Build a Robust Robotics Ecosystem

Building a Sustainable Malaysian Robotics Ecosystem

- To Support a Sustainable and Global Robotics Industry, a healthy Ecosystem supporting the Industry must be built.
- The Quad-Helix Model of Innovation:
 - 1. Government
 - 2. Industry Players
 - 3. Knowledge Sector
 - 4. NGO/Public

A Generic National Innovation Ecosystem

www.innovationecosystems.com

Innovation Framework/Ecosystem

- The framework clusters the most important innovation factors into six dimensions:
 - Innovation Input factors
 such as enterprise strategy, knowledge, capital and human resources, both domestically and globally.
 - such as design, production, organizational culture and barriers to commercialization.
 - Public Policy environment
 - such as R&D policy, taxes, intellectual property, standards and market access.
 - **Innovation** *Infrastructure* conditions
 - such as quality of research in universities and federal labs, and availability of skilled human resources.
 - Consumer value and *Outputs*
 - such as market growth, cost reduction, profits, revenues and convenience.
 - **National Outcomes**
 - such as employment, economic growth, competitiveness and trade balance.
- These dimensions, individually and as an ecological system, make up the context in which the nation's enterprises innovate.

Developing a Sustainable and Global Malaysian Robotics Industry

Today's Roundtable Objectives

- To gather UTM's Robotics Experts to Discuss the MRRDC Agenda
- Start a discussion on a UTM's Robotics R&D Agenda to lead MRRDC and in support of the Malaysian Robotics Industry
- To gather and update Information on Robotics Resources in UTM

Terima Kasih Thank You