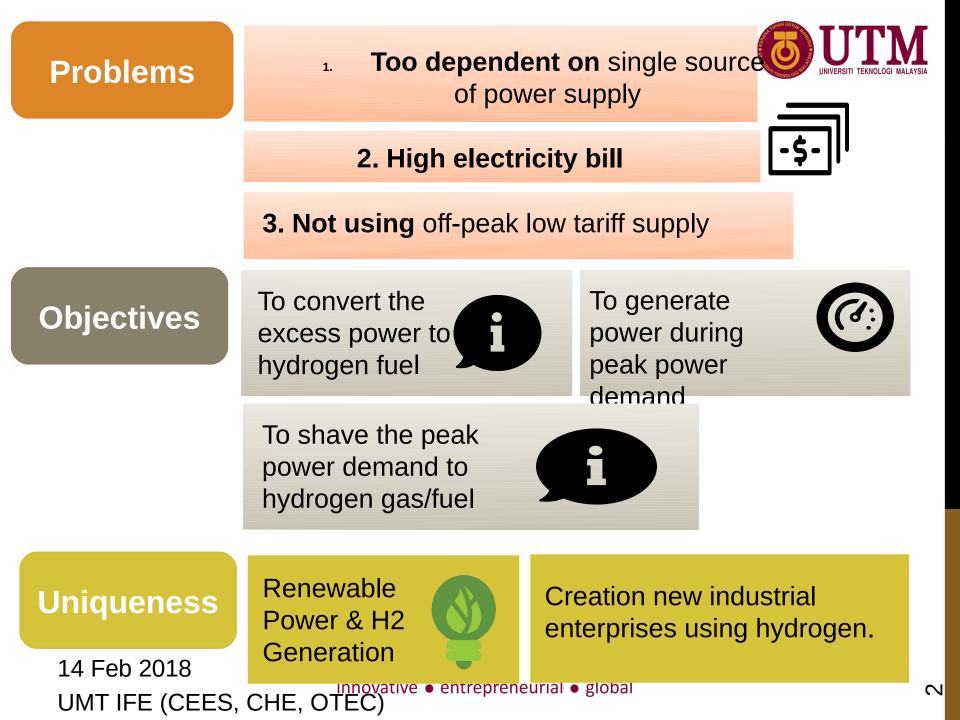
Proposal: Translational Research on Energy: "Power to Gas" System Using Electrolyzer & H2 FuelCells for UTM Campuses

@UTM DataCentre, Pioneer Site


Project Team Membership:

- 1. Prof Dato' Ir Dr A Bakar Jaafar
- 2. Dr. Fatimah binti Salim
- 3. Dr. Ho Wai Shin
- Prof. M Dr Hasimah Abd 14 Rehmans
- ¹ Dr. Earidah Hussin innovative entrepreneuriar global UMT IFE (CEES, CHE, OTEC)

- 6. Dr. Norzanah Rosmir
- 7. Dr. Tuan Amran Tuan Abdullah
- 8. Mr Azrin Ariffin
- 9. Mr Mohammad Shafiq

methodology

Gather the UTM campuses power system network data for power system study

Perform simulation on power system network

Determine the specification of the electrolyzer & fuel celss for the UTM campuses

Conduct testing at the pilot plants, monitoring system to monitor electrolyzer & hydrogen fuel cell operations

14 Feb 2018 UMT IFE (CEES, CHE, OTEC)

The Power to Gas (PtG) approach represents the Conversion of Power to Hydrogen using the electrolyzer. This method has been proven to improve the Power Distribution System by Utilizing Excess and/or Off-Peak Power. In addition, the converted hydrogen gas which virtually stored as energy and can be used to generate electricity via a fuel cell stack up to the required kW or MW capacity. In general, this approach helps in energy saving, provides energy security for data centre, and also creates new industrial enterprises using hydrogen.

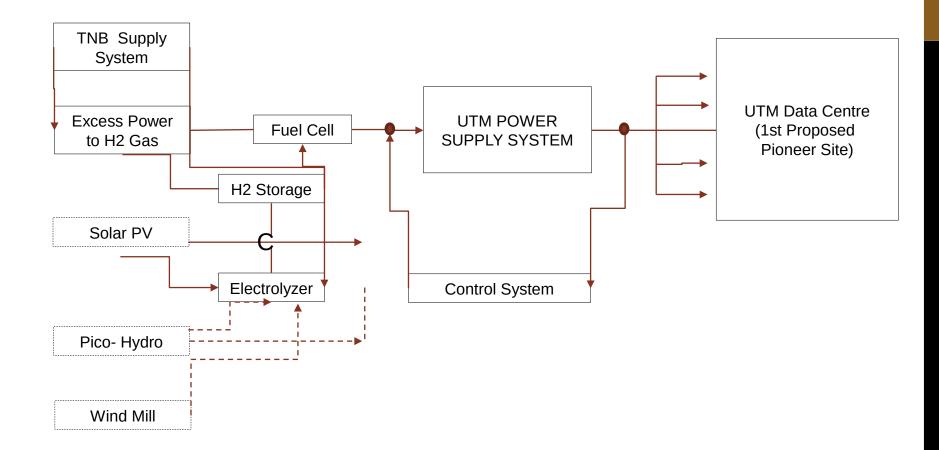


Figure 1. UTM Data Centre Energy System Configuration for Sustainability 14 Feb 2018 UMT IFE (CEES, CHE, OTEC)

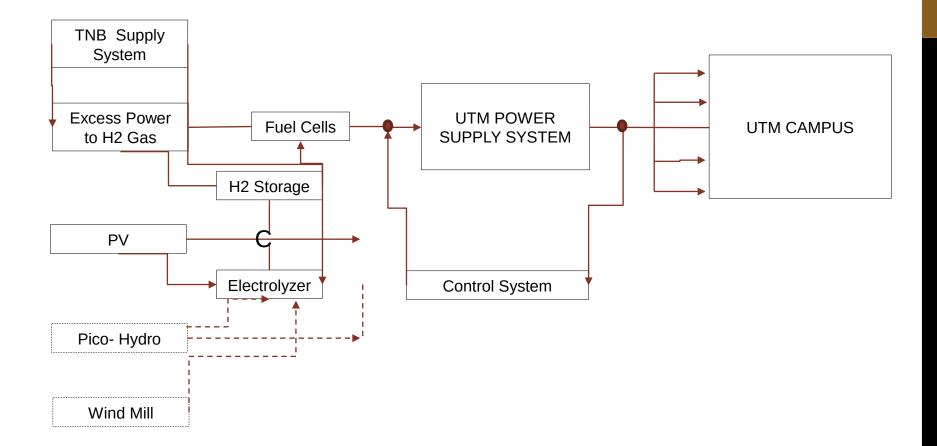


Figure 2. UTM Campus Energy System Configuration for Sustainability 14 Feb 2018 UMT IFE (CEES, CHE, OTEC)

Project Schedule **UTM**

Sontombo

 \sim

							Septembe
Activity	Mac	April	May	June	July	August	r
Gather the UTM campuses							
power system network data							
Perform simulation on power							
system network.							
Determine the specifications of							
the electrolyzer & H2FC for the							
UTM campuses							
Installation							
Conduct testing at the pilot							
plants, monitoring system to							
monitor electrolyzer & H2FC							
operations							
Launching							

Outcomes:

EstimatED COSTS of ELECTROLYZERS BY CAPACITY

Actual specifications of the electrolyzer will be decided once the UTM data center loading has been identified. For this P2G project, electrolyzers utilizing PEM technology ranging from 500kW to 2MW are considered.

	(@) 500 kW	1 MW	(@) 2 MW
Nominal H2 Flow	100 Nm3/hr	250 Nm3/hr	400 Nm3/hr
H2 produced (kg)	9 kg/hr	22.5 kg/hr	36 kg/hr
* Estimated Price per kg	RM 67	RM 67	RM 67
(#) Market Value (Per Month) @80% capacity	RM 347,328	RM 868,320	RM 1,389,312

Note: * - Hydrogen from natural gas (produced via steam reforming off-site and delivered by truck). Tax included.

- Per Month (PM) = kg/h x Avg price x24 hrs x30 days x 0.8 capacity

@ - Actual manufacturer H2 generation specifications

1 kg is approximately equivalent to 11.111 Nm³

It is estimated that 1kWh of electricity will generate 0.01538 to 0.01724 kg of hydrogen

14 Feb 2018 innovative • entrepreneurial • global UMT IFE (CEES, CHE, OTEC)

	@500 kW	1 MW	2MW
H2 input (kg/hr)	9 kg/hr	22.5 kg/hr	36 kg/hr
Power Output (MWhr)			
Capital Cost (RM million)			
O&M (%)			
Generation Cost (RM/kWh)			

14 Feb 2018 INT IFE (CEES, CHE, OTEC)