

Sekolah Pendidikan Profesional dan Pendidikan Berterusan (UTMSPACE)

PROGRAM KEJURUTERAAN ELEKTRIK PUSAT PENGAJIAN DIPLOMA (PPD), SPACE UNIVERSITI TEKNOLOGI MALAYSIA KUALA LUMPUR

MECHATRONICS ENGINEERING LABORATORY

(DDWE 3711)

INDUSTRIAL AUTOMATION

EXPERIMENT 1

FEEDING AND EXTRACTING MODULE

Group members	1.
	2.
	3.
	4.
	5.
Lecturer	•
Date	:

No.	PO	CO	Student Marks	Marks
1	PO2	CO2		30%
2	PO3	CO4		20%
3	PO4	CO2		50%
Total Marks			/100%	

OBJECTIVES: i. To understand the components in the system and their characteristics.

- ii. To make electrical and pneumatic connections based on sensors diagram, I/O list and pneumatic diagram.
- iii. To understand the PLC program and the system workflow
- iv. To understand the integration using difference system input and output

PARTS LIST:

PART	<u>QUANTITY</u>
CYLINDER	3
ROTARY	1
VACUUM INJECTOR	1
VACUUM S/W	1
F/R UNIT	1
REED S/W	4
MICRO SENSOR	1
PROXIMITY SENSOR	2
F/B SENSOR	2
VACUUM PAD	1
END VALVE	1
S, VALVE	6
CONTROL PANEL PARTS	QUANTITY

IND LAMP	3
PUSH BUTTON	2
EMG S/W	1
RELAY	2
POWER SUPPLY	1
PLC(FP1 C40)	1

<u>I/O LIST</u>

INPUT LIST:

INPUT NO.	REMARKS	SYMBOL
X0	PUSH BUTTON 2 (START)	
X1	DISTRIBUTOR CY IN	
X2	DISTRIBUTOR CY OUT	
X3	PARTS TRANSFER	
X4	TRANSFER OUT	
X5	PARTS ARRIVED	
X6	PARTS DETECT	
X7	Z CY IN	
XA	ROTARY IN	
ХВ	ROTARY OUT	
XC	VACUUM S/W	

{PO2, CO2} / 20

OUT PUT LIST:

OUT NO.	REMARKS	SYMBOL
YO	DISTRIBUTION CY	
Y1	TRANSFER CY	
Y2	ROTARY CY	
Y3	Z CY	
Y4	VACUUM	

INSTRUCTIONS:

1. Table 1 shows the position of cylinders. You are instructed to connect the pneumatic circuit according to Table 1.

Example: CYLINDER 1 should be connected to the first 5/2way valve (Y0) and so on.

{PO2, CO2}

/ 10

/ 20

/ 20

/ 30

ACTUATOR	SOLENOID VALVE
Cylinder 1	Solenoid 1 (Y0)
Cylinder 2	
Cylinder 3	
Cylinder 4	
Suction cup / vacuum	

Table 1

- 2. Push the 'manual override' button on the solenoid valve to test the system. If the right connection has been made, the actuator (cylinder) will move when you press the button.
- 3. Fill in the symbol as you see on the system into the module's I/O list.
- 4. Part of the connection from the valves and sensors to the connecting panel have been made. Your job is to understand the drawing (Attachment 1 to 4) and cable up the connecting panel to the PLC panel. **{PO3, CO4}**
- 5. Upload PLC program 'module 1' from computer into PLC.
- 6. Insert all the 'base' work pieces into the feeding shaft. Push PB2 button.
- 7. Run the program by using 'force' function from the computer_____
- 8. Explain about the process in module 1. {PO4, CO2}
- 9. Write down the BND and BLD of the PLC program. {PO4, CO2}

Attachment 1

4

