

Sekolah Pendidikan Profesional dan Pendidikan Berterusan (SPACE)

JABATAN KEJURUTERAAN ELEKTRIK PUSAT PENGAJIAN DIPLOMA (PPD), SPACE UNIVERSITI TEKNOLOGI MALAYSIA KUALA LUMPUR

DDWB/E/K 3711 (ELECTRONICS 2)

EXPERIMENT 1 BIPOLAR JUNCTION TRANSISTOR (BJT) AND FIELD EFFECT TRANSISTOR (FET): AC ANALYSIS

EXPERIMENT 1 : Bipolar Junction Transistor (BJT) and Field Effect Transistor (FET) : AC Analysis

OBJECTIVES

- 1. To determine the values of voltage gain A_V , input impedance, Z_i and output impedance, Z_o for loaded and unloaded operation in BJT.
- 2. To determine the values of saturation current, I_{DSS} and pinch off voltage, V_p and the voltage gain, A_v in FET.

COMPONENT/EQUIPMENT

- 1. Function generator
- 2. BJT : 2N3904
- 3. D-MOSFET : DN 2535
- 4. Oscilloscope
- 5. Resistor: $1 \text{ k}\Omega$ (2 units), $3 \text{ k}\Omega$ (1 unit), $10 \text{ k}\Omega$ (1 unit), $33 \text{ k}\Omega$ (1 unit), $1 \text{ M}\Omega$ (1 unit)
- 6. Capacitor: 15 μ F (2 units), 22 μ F (1 unit)

THEORY

Bipolar Junction Transistor (BJT)

The common-emitter (CE) transistor amplifier configuration is widely used. It provides large voltage gain (typically ten to hundred) and provides moderate input and output impedance. The AC signal voltage gain is defined as

$$Av = \frac{Vo}{Vi}$$

where V_i and V_o can both be rms, peak or peak-peak values. The input impedance, Z_i is that of the amplifier (as seen by the input signal). The output impedance, Z_o is that seen looking from the load into the output of the amplifier. The transistor's ac dynamic resistance, r_e , can be calculated using

$$re = \frac{26 \ mV}{I_E \ mA}$$

The ac voltage gain of a CE amplifier (under no load / without R_L) can be calculated using

$$A_V = \frac{-R_C}{r_e}$$

The ac input impedance is calculated using

$$Z_i = R_1 / / R_2 / / \beta r_e$$
 (Eq 1)

The ac output impedance is calculated using

$$Z_0 = R_c$$

For measurement, the voltage gain is obtained using

$$Av = \frac{Vo}{Vi}$$

For measurement, the transistor's ac dynamic resistance is obtained using

$$r_e = \frac{-R_C}{A}$$

For measurement, the ac input impedance is obtained using

$$Z_i = \frac{V_i}{\left(V_{sig} - V_i\right)} R_X \tag{Eq 2}$$

For measurement, the ac output impedance is obtained using

$$Z_O = \frac{(V_O - V_L)}{V_L} R_L \tag{Eq 3}$$

Field Effect Transistor

The common-source (CS) transistor amplifier configuration is widely used. The AC signal voltage gain is defined as

$$Av = \frac{Vo}{Vi}$$

where V_i and V_o can both be rms, peak or peak-peak values.

The ac voltage gain of a CS amplifier (under no load / without R_L) can be calculated using

$$A_V = -g_m R_D$$

$$g_m = \frac{2I_{DSS}}{V_p} \left(1 - \frac{V_{GSQ}}{V_p}\right)$$

Part A : BJT : Voltage Gain, Av

- Make the connections as shown in Figure 1. This arrangement is called Common Emitter Amplifier (CE Amp) that can be represented by block diagram as shown in Figure 2.
- 2. Apply an AC input signal, $V_{sig} = 50 \text{ mV}_{peak}$ at frequency, f = I kHz. Observe the output waveform on the oscilloscope to ensure that there is no distortion (if there is distortion, reduce the input signal or check the de bias). CH1 at AC input of circuit and CH2 at AC output of the circuit.
- 3. Record the resulting DC currents and AC output voltage, Vo in Table 1. Complete Table 1.
- 4. Sketch the output voltage with reference to the input voltage in the space provided in the answer sheet.

Figure 1

Part B :BJT : Input Impedance, Z_i

Procedures:

- 1. Connect $R_X = 1 \ k\Omega$ to the CE Amplifier as shown in Figure 2.
- 2. Apply input signal, $V_{sig} = 50 \text{ mV}_{peak}$. Observe the output waveform to ensure that there is no distortion. Measure $V_{i(peak)}$. Record your measurement in Table 2.
- 3. Using the value of I_C and I_B in Table 2, calculate β .
- 4. Calculate Z_i using Equation 1 and Equation 2. Show your calculations.

Part C : BJT : Output Impedance, Z_0

- 1. Remove R_x . Apply input voltage, $V_i = 50 \text{ mV}_{(peak)}$ and measure the output voltage, $V_{o(peak)}$. Ensure that there is no distortion in output waveform. (This value of V_0 is for no load resistor, R_L). Record your measurement in Table 3.
- 2. Connect load resistor, R_L as shown in Figure 3. Measure V_L (peak). Record your measurement in Table 4.
- 3. Complete Table 4. Show your calculations.

Figure 3

Part D : D-MOSFET : DETERMINATION OF SATURATION CURRENT AND PINCH OFF VOLTAGE

- 1. Make the connections as shown in Figure 4. Connect the GATE (G) to the negative voltage (V_{GG}) . This negative voltage can be obtained from the Trainer.
- 2. Set V_{GG} = 0 V. Measure and Record I_D in Table 4. This value is the saturation current I_{DSS} .
- 3. Varies $V_{\rm GG}$ until $I_{\rm D}$ =0 mA, Measure and Record $V_{\rm GS}$ in Table 4. This value is pinch off voltage, $V_{\rm p}$

Figure 4

PART E : D-MOSFET : Voltage Gain

- 1. Make the connections as shown in Figure 5.
- 2. Measure and record $V_{GS.}$
- 3. Apply an AC input signal, $V_{sig} = 50 \text{ mV}_{peak}$ sine wave at frequency, f = I kHz. Observe the output waveform on the oscilloscope to ensure that there is no distortion (if there is distortion, reduce the input signal or check the de bias).
- 4. Record the resulting DC voltage and AC output voltage, Vo in Table 5. Complete Table 5.
- 5. Sketch the output voltage with reference to the input voltage in the space provided in the answer sheet.

Figure 5.

2N3903, 2N3904

General Purpose Transistors

NPN Silicon

Features

Pb–Free Packages are Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	V _{CBO}	60	Vdc
Emitter-Base Voltage	VEBO	6.0	Vdc
Collector Current – Continuous	lc	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C
THERMAL OULARACTERICTION #1			

THERMAL CHARACTERISTICS (Note 1)

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	R _{eJA}	200	°C/W
Thermal Resistance, Junction-to-Case	R _{BJC}	83.3	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Indicates Data in addition to JEDEC Requirements.

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

= 3 or 4 х Y = Year

WW = Work Week . = Pb-Free Package (Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

1

Semiconductor Components Industries, LLC, 2012 August, 2012 - Rev. 8

Publication Order Number: 2N3903/D

2N3903, 2N3904

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

	Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERIS	TICS					
Collector-Emitter Bre	eakdown Voltage (Note 2) (Ic = 1.0 mAdc, IB = 0)		V(BR)CEO	40	-	Vdc
Collector-Base Brea	kdown Voltage (I _C = 10 μAdc, I _E = 0)		V(BR)CBO	60	-	Vdc
Emitter-Base Break	iown Voltage (I _E = 10 μAdc, I _C = 0)		V(BR)EBO	6.0	-	Vdc
Base Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)		IBL	-	50	nAdc
Collector Cutoff Curre	ent (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)		ICEX	-	50	nAdc
ON CHARACTERIST	ICS					
DC Current Gain (No ($I_C = 0.1 \text{ mAdc}, V_{CE} =$ ($I_C = 1.0 \text{ mAdc}, V_{CE} =$ ($I_C = 10 \text{ mAdc}, V_{CE} =$	le 2) = 1.0 Vdc) = 1.0 Vdc) : 1.0 Vdc)	2N3903 2N3904 2N3903 2N3904 2N3903	h _{FE}	20 40 35 70 50	- - - 150	-
(I _C = 50 mAdc, V _{CE} = (I _C = 100 mAdc, V _{CE}	1.0 Vdc) = 1.0 Vdc)	2N3904 2N3903 2N3904 2N3903 2N3904		100 30 60 15 30	300 - - - -	
$ Collector - Emitter Sa \\ (I_C = 10 mAdc, I_B = 1) \\ (I_C = 50 mAdc, I_B = 5) $	turation Voltage (Note 2) .0 mAdc) .0 mAdc		V _{CE(sat)}	-	0.2 0.3	Vdc
$\begin{array}{l} \text{Base-Emitter Satura}\\ (I_C=10 \text{ mAdc}, I_B=1)\\ (I_C=50 \text{ mAdc}, I_B=5) \end{array}$		VBE(sat)	0.65	0.85 0.95	Vdc	
SMALL-SIGNAL CH	ARACTERISTICS					
Current-Gain - Band (Ic = 10 mAdc, VcE =	lwidth Product 20 Vdc, f = 100 MHz)	2N3903 2N3904	fr	250 300	-	MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)		Cobo	-	4.0	pF
Input Capacitance (V	EB = 0.5 Vdc, I _C = 0, f = 1.0 MHz)		Cibo	-	8.0	pF
Input Impedance (Ic = 1.0 mAdc, V _{CE} :	= 10 Vdc, f = 1.0 kHz)	2N3903 2N3904	h _{ie}	1.0 1.0	8.0 10	kΩ
Voltage Feedback Ra (I _C = 1.0 mAdc, V _{CE} =	tio = 10 Vdc, f = 1.0 kHz)	2N3903 2N3904	h _{re}	0.1 0.5	5.0 8.0	X 10-4
Small-Signal Current (I _C = 1.0 mAdc, V _{CE} =	Gain = 10 Vdc, f = 1.0 kHz)	2N3903 2N3904	h _{fe}	50 100	200 400	-
Output Admittance (Ig	= 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)		h _{oe}	1.0	40	μmhos
Noise Figure (I _C = 100 μAdc, V _{CE} = 5.0 Vdc, R _S = 1.0 k Ω, f = 1.0 kHz) 2N3903 2N3904			NF	-	6.0 5.0	dB
SWITCHING CHARA	CTERISTICS					
Delay Time	(Vcc = 3.0 Vdc, V _{BE} = 0.5 Vdc,		t _d	-	35	ns
Rise Time	IC = 10 mAdc, IB1 = 1.0 mAdc)		ţ,	-	35	ns
Storage Time	(V _{CC} = 3.0 Vdc, I _C = 10 mAdc, I _{B1} = I _{B2} = 1.0 mAdc)	2N3903 2N3904	ts	-	175 200	ns
Fall Time		tr	-	50	ns	

Pulse Test: Pulse Width ≤ 300 µs; Duty Cycle ≤ 2%.

http://onsemi.com

Supertex inc.

DN2535

Features

- High input impedance
- Low input capacitance
- Fast switching speeds
- Low on-resistance
- Free from secondary breakdown
- Low input and output leakage

Applications

- Normally-on switches
- Solid state relays
- Converters
- Linear amplifiers
- Constant current sources
- Power supply circuits
- Telecom

Ordering Information

Part Number	Package Option	Packing
DN2535N3-G	TO-92	1000/Bag
DN2535N3-G P002		
DN2535N3-G P003]	
DN2535N3-G P005	TO-92	2000/Reel
DN2535N3-G P013]	
DN2535N3-G P014	1	
DN2535N5-G	TO-220	50/Tube

G denotes a lead (Pb)-free / RoHS compliant package.

Contact factory for Wafer / Die availability. Devices in Wafer / Die form are lead (Pb)-free / RoHS compliant.

Absolute Maximum Ratings

Parameter	Value
Drain-to-source voltage	BV _{DSX}
Drain-to-gate voltage	BV _{DGX}
Gate-to-source voltage	±20V
Operating and storage temperature	-55°C to +150°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Typical Thermal Resistance

Package	$\theta_{j_{\mu}}$
TO-92	132°C/W
TO-220	29ºC/W

Doc.# DSFP-DN2535 8062813

General Description

N-Channel Depletion-Mode

Vertical DMOS FETs

The Supertex DN2535 is a low threshold depletion mode (normally-on) transistor utilizing an advanced vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces a device with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, this device is free from thermal runaway and thermally-induced secondary breakdown.

Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Product Summary

BV _{DSX} /BV _{DGX}	R _{DS(ON)} (max)	l _{oss} (min)
350V	25Ω	150mA

Pin Configuration

3-Lead TO-92

L = Lot Number Ø YY = Year Sealed 2535N5 WW = Week Sealed TIME = "Green" Packaging 000

Package may or may not include the following marks: Si or 🍈

3-Lead TO-220

Supertex inc. www.supertex.com

DN2535

Thermal Characteristics

Package	I _D (continuous) [†]	I _D (pulsed)	Power Dissipation @T _c = 25°C	l _{or} t	I _{DRM}
TO-92	120mA	500mA	1.0W	120mA	500mA
TO-220	500mA	500mA	15W	500mA	500mA

Notes:

† Ip (continuous) is limited by max rated Tr

Electrical Characteristics (T. = 25°C unless otherwise specified)

Sym	Parameter	Min	Тур	Max	Units	Conditions
BV	Drain-to-source breakdown voltage	350	-	-	V	V _{as} = -5.0V, I _p = 100µA
V _{GSIOFE)}	Gate-to-source off voltage	-1.5	-	-3.5	V	V _{ps} = 25V, I _p = 10µA
ΔV _{GS(OFF)}	Change in V _{GS(OFF)} with temperature	-	-	-4.5	mV/ºC	V _{ps} = 25V, I _p = 10µA
I _{GSS}	Gate body leakage current	-	-	100	nA	V _{gs} = ±20V, V _{ps} = 0V
		-	-	10	μA	V _{DS} = Max rating, V _{GS} = -10V
I _{D(OFF)}	Drain-to-source leakage current	-	-	1.0	mA	$V_{DS} = 0.8$ Max Rating, $V_{GS} = -10V$, $T_{A} = 125^{\circ}C$
I _{DSS}	Saturated drain-to-source current	150	-	•	mA	V _{gs} = 0V, V _{ps} = 25V
R _{DS(ON)}	Static drain-to-source on-state resistance	-	17	25	Ω	V _{gs} = 0V, I _p = 120mA
ΔR _{DS(ON)}	Change in RDS(ON) with temperature	-	-	1.1	%/ºC	V _{gs} = 0V, I _p = 120mA
G _{FS}	Forward transconductance	-	325	•	mmho	V _{DS} = 10V, I _D = 100mA
Ciss	Input capacitance	-	200	300		V _{cc} = -10V,
Coss	Common source output capacitance	-	12	30	pF	V _{DS} = 25V,
C _{RSS}	Reverse transfer capacitance	-	1.0	5.0		f = 1.0MHz
t _{d(ON)}	Turn-on delay time	-	-	10		
t,	Rise time	-	-	15		$V_{DD} = 25V,$
t _{a(OFF)}	Turn-off delay time	-	-	15	ns	$R_{p} = 150 \text{ mA},$ $R_{p} = 25\Omega,$
t,	Fall time	-	-	20		GEN
V _{sp}	Diode forward voltage drop	-	-	1.8	V	V _{gs} = -10V, I _{sp} = 120mA
t,,	Reverse recovery time	-	800	-	ns	V _{gs} = -10V, I _{sp} = 1.0A

Notes:

All D.C. parameters 100% tested at 25°C unless otherwise stated. (Pulse test: 300µs pulse, 2% duty cycle.)
 All A.C. parameters sample tested.

Switching Waveforms and Test Circuit

Sekolah Pendidikan Profesional dan Pendidikan Berterusan (SPACE)

JABATAN KEJURUTERAAN ELEKTRIK PUSAT PENGAJIAN DIPLOMA (PPD), SPACE UNIVERSITI TEKNOLOGI MALAYSIA KUALA LUMPUR

DDWE/B/K 3711 (ELECTRONICS 2)

REPORT SHEET 1

BIPOLAR JUNCTION TRANSISTOR (BJT) AND FIELD EFFECT TRANSISTOR (FET) : AC ANALYSIS

Group members	1.
	2.
	3.
Lecturer	:
Date	:

No.	PO	СО	Student Marks	Marks
1	PLO1	CO1		40
2	PLO2	CO2		30
3	PLO4			20
3	PLO8			10
Total Marks				/100

EXPERIMENT 1 : BIPOLAR JUNCTION TRANSISTOR (BJT) : DC AND AC ANALYSIS

Part A : BJT AC Biasing

Measurement (Multimeter)		Calculation		Measurement (Oscilloscope)				
I _B (mA)	I _c (mA)	I _E (mA)	$r_e = \frac{26mV}{I_E}$	$A_{v} = \frac{-R_{c}}{r_{e}}$	$\mathbf{V}_{ ext{sig}(ext{peak})}$	V _{o(peak)}	$A_{v} = \frac{V_{o}}{V_{i}}$	$r_e = \frac{-R_c}{A_v}$
			Tab	le 1				

PLO1 CLO1 /10m

Sketch of $V_{i} \mbox{ and } V_{o}$

PLO1 CLO1	/10m
-----------	------

Part B : BJT	:	: Input impedance, Z _i	
--------------	---	-----------------------------------	--

$\beta = \frac{I_C}{I_B}$	Z _i (from Eq.1)	Vsig (peak)	$\mathbf{V}_{i(peak)}$	Z _i (from Eq.2)		

Table 2

PLO1 CLO1 /10m

Part C : BJT : Output Impedance, Z_o

Calculation (Theory)		Measurement			
Zo		Output Voltage (peak)	Z _o (from Eq.3)		
No load		Vo =			
With load		V _L =			
Table 3					

Table 3

PLO1 CLO1 /10m

Part D : D-MOSFET : Determination of Saturation Current, I_{DSS} and Pinch Off Voltage , $\,Vp$

I _{DSS} (mA)	V _P (V)	
Table 4		

PLO1 CLO1 /10m

Part E : D-MOSFET -AC Biasing

Measurement (Multimeter)	Calculatio	Measur	ement (Os	cilloscope)	
V _{GS} (V)	$g_m = A_v$ $2\frac{I_{DSS}}{V_P}(1 - \frac{V_{GS}}{V_P}) = -g_m R_D$		$\mathbf{V}_{sig(peak)}$	V _{o(peak)}	$A_v = \frac{V_o}{V_i}$

Table 5

PLO1 CLO1	/10m
-----------	------

Questions:

Q1.	Compare the voltage gain of BJT and D- MOSFET obtained using calculation and
	measurement. Give your comments.
•••••	
•••••	
•••••	
•••••	
•••••	
	PLO1 CLO1 /10m
Q2.	Discuss the function of the circuits (Compare the input and output waveforms).
•••••	
•••••	

Update: May 2018 (Zaimah Daud)

		PLO1	CLO1	/10m
Q3.	Compare the values of input impedance obtained using Ed	quation	1 and E	quation 2. Give
c	your comments.	1		
		PLO1	CLO1	/10m
Q4.	From Table 3, compare the values of output impedance.	ive you	r comme	ents.
		PLO1	CLO1	/10m
Q5. Co	onclusion			
				•••••
		•••••		
		·····		
		PLO4		/10m

	Criteria	Very poor (5 Marks)	Poor (10 Marks)	Moderate (15 Marks)	Good (20 Marks)	Excellent (25 Marks)
1	Ability to perform lab works based on the manual/ guidelines provided	y to perform lab works d on the manual/ lines provided		Can perform lab work moderately but require a lot of guidance	Can perform lab work systematically and only need minor guidance	Demonstrate systematic and excellent performances
2	Ability to perform simple lab work without supervision	Need full supervision	Major supervision	Minor supervision	Limited supervision	Work independently With no supervision
3	Ability to carry out lab work efficiently on the following criteria, (circuit assembly, using measurement apparatus and techniques)	Not able to construct a full circuit, poor/inaccurate measurement techniques/usag e of equipment	Completed full circuit but poor/inaccurate measurement techniques/usage of equipment	Completed full circuit and it works successfully. However the measurement techniques/usa ge of equipment had some minor deficiency	Completed full circuit and it works successfully. However the measurement techniques/usa ge of equipment had produced a few errors/correctio ns.	Circuit was completed and works properly without any errors /corrections. Also demonstrated an excellent skills/conducts.
4	Ability to collect the required data, performs appropriate analysis and/or troubleshooting (if necessary).	Not able to collect data and/or perform analysis	Limited data collection but not able to perform analysis/ troubleshooting	Demonstrates major errors in data collection and /or analysis. Limited ability in troubleshooting	Minor error in data collection and analysis. Good approach/techn iques in troubleshooting	Data collection and data analysis are done systematically and performs excellent approaches to trouble shoot (if necessary)

	Criteria	Very Poor	Poor	Moderate	Good	Excellent
		(5 Marks)	(10 Marks)	(15 Marks)	(20 Marks)	(25 Marks)
1	Data Collection	No data reported.	Data is brief and missing significant pieces of information.	Incomplete these of components of data (Both tables and Graphes): •Tables •Graphs	Only one component of data is incomplete (either table or graph). • Tables/Graphs	 Data is completed properly and attributes mentioned below are observed with great care: Tables are easy to read and units are provided. Graphs are labeled and shown trends.
2	Completing/Answering Questions	Questions are not answered at all.	Attempts were made but gave wrong answer to every question.	Questions are answered without any depth and with many errors.	Questions are properly answered but with a few errors.	Questions are answered completely and correctly.
3	Summary/Conclusion	No conclusion or summary is/are drawn/reported	Conclusion is too brief without any reference to important pieces of information	Any two components of the conclusion/summary (mentioned) are missing : • Summary • Data • Hypothesis • Errors	 Any component of the conclusion /Summary (mentioned) is missing: Summary Data Hypothesis Errors 	 Conclusion /Summary of these attributes below were addressed/reported properly, clearly and systematically. experiment, data cited hypothesis/assumption s made The source of errors.
4	Report Quality	No attention to detail evident.	Report contains many errors.	Report is good but with few spelling or grammatical errors.	Report is well written and cohesive, with a few errors	Report is very well written without any spelling or grammatical mistakes.

PLO4 For Laboratory Report

PLO8 for LABS Experiments

	Criteria -Understand the conducts, ethical values and socio- cultural impacts on professional norm and practice	Very poor (5 Marks)	Poor (10 Marks)	Moderate (15 Marks)	Good (20 Marks)	Excellent (25 Marks)
1	Professional Practice (Punctuality/Follow the Rules)	Non- Conforming/In- punctuality	Not always Conforming/ Not always punctual	Sometimes Conforming/ Sometimes punctual	Conformin g /Punctual	Always Conforming /Always Punctual
2	Ethical Conduct/Behaviour (Trustworthy / Respectfulness)	Does not practice	Not always practicing	Sometimes only	Mostly practicing	Always practicing
3	Social Cultural (Racial Harmony)	Does not observe	Not always observe	Sometimes observe	Mostly observe	Always observe
4	Personality	Mostly unpleasant	Not always pleasant	Moderately pleasant	Mostly pleasant	Always pleasant