

JABATAN KEJURTERAAN ELEKTRIK PUSAT PENGAJIAN DIPLOMA (PPD), SPACE UNIVERSITI TEKNOLOGI MALAYSIA KUALA LUMPUR

ELECTRICAL ENGINEERING LABORATORY 2 (DDWE 2701)

ELECTRONICS 1

EXPERIMENT 1 RECTIFIER AND CLIPPING CIRCUITS

TITLE: RECTIFIER AND CLIPPING CIRCUITS

OBJECTIVES;

After doing this experiment, you will be able to:

- 1. Construct half-wave and full-wave rectifier circuits.
- 2. Identify the output voltage of the half-wave and full-wave rectifier circuits.
- 3. Calculate the equivalent voltage for the half-wave and full-wave rectifier.
- 4. Understand the function and operation of clippers.

EQUIPMENTS;

- 1. Audio (function) generator
- 2. DC power supply
- 3. Oscilloscope
- 4. Multimeter
- 5. Transformer

COMPONENTS;

- 1. Resistors (l $k\Omega$, 2.2 $k\Omega$)
- 2. Silicon diode IN4001

Part A: Half-Wave Rectifier

Procedure:

- 1. Make a connection as shown in Figure 1.
- 2. Connect channel 1 (CH1) of the oscilloscope to the secondary side of the transformer and channel 2 (CH2) across 1 k Ω resistor. Sketch both waveforms in Figure A1.
- 3. Complete Table 1. Show all calculations.
- 4. Reverse the direction of the diode and sketch the resulting waveform in Figure A2.

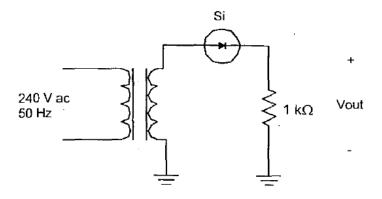


Figure 1

Part B: Full-Wave Rectifier

1. Center-Tap Network

Procedure:

- 1. l. Make a connection as shown in Figure 2.
- 2. Connect channel 1 (CH1) of the oscilloscope to the secondary side of the transformer and channel 2 (CH2) across 1 k Ω resistor. Sketch both waveforms in Figure A3.
- 3. Complete Table 2. Show all calculations.

(Note: The secondary peak voltage must be measured with reference to ground)

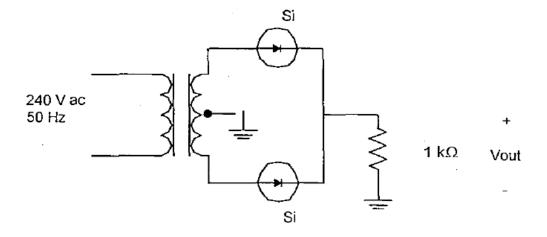


Figure 2

2. Bridge Network

Procedure:

- 1. Connect channel 1 (CH1) of the oscilloscope to the secondary side of the transformer.
- 2. Sketch the secondary peak voltage in Figure A4.
- 3. Make a connection as shown in Figure 3.
- 4. Connect channel 2 (CH2) of the oscilloscope across 1 $k\Omega$ resistor. Sketch the output waveform in Figure A4.
- 5. Complete Table 3. Show all calculations.

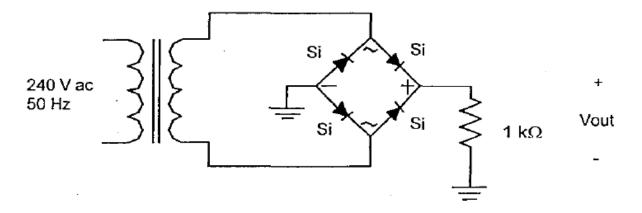


Figure 3

Part C: Clipping Circuits

Procedure:

- 1. Set the audio / function generator to 400 Hz sine wave. Observe this sine wave with the oscilloscope through CH1. Set the amplitude to $20~V_{p-p}$ (Vs $_{p-p}$).
- 2. Construct the circuit of Figure 4.
- 3. Observe the voltage across the resistor (V_0) through CH2. Record the peak value of V_0 in Table 4.
- 4. Set the oscilloscope to view both channels (DUAL). Sketch both waveforms in Figure A5.
- 5. Construct the circuit of Figure 5.
- 6. Observe the voltage across the resistor (V_0) through CH2. Record the peak value of V_0 in Table 4.
- 7. Sketch both waveforms in Figure A6.

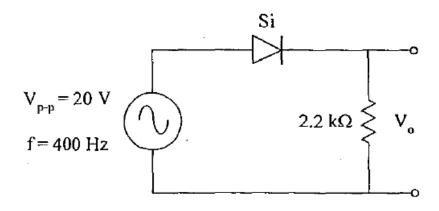


Figure 4

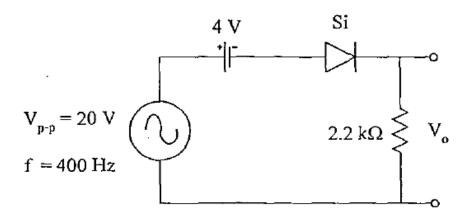


Figure 5