

Sekolah Pendidikan Profesional dan Pendidikan Berterusan (SPACE)

JABATAN KEJURUTERAAN ELEKTRIK PUSAT PENGAJIAN DIPLOMA (PPD), SPACE UNIVERSITI TEKNOLOGI MALAYSIA KUALA LUMPUR

DDWE 1711 ELECTRICAL ENGINEERING LABORATORY

1

(CIRCUIT THEORY 1)

EXPERIMENT 1 SERIES CIRCUITS

EXPERIMENT 1 : SERIES CIRCUITS

OBJECTIVES:

After performing this experiment, you will be able to:

- 1. Use Ohm's law to find the current and voltages in a series circuit.
- 2. Apply Kirchhoffs voltage law to a series circuit.
- 3. Apply the voltage divider rule to series circuit.
- 4. Design a voltage divider to meet a specific voltage output.

APPARATUS:

- 1. Analog Multimeter
- 2. DC Voltage Source
- 3. Variable Resistor

COMPONENTS:

1. Resistors: 1 k Ω (1 unit), 3.3 k Ω (1 unit), 6.8 k Ω (1 unit)

PART A : OHM'S LAW, KIRCHHOFF'S VOLTAGE LAW AND VOLTAGE DIVIDER RULE

Procedures:

- 1. Obtain the resistors listed in Table 1.
- 2. Measure each resistor using analog multimeter. Record the value in the same table.
- 3. Connect all resistors in series. Measure the total resistance of the series connection. Record the measured value in Table 1.
- 4. Calculate the total resistance of the series connection. Show your calculation in the answer sheet.
- 5. Complete the series circuit by adding a 15 volt DC source. Connect the ammeter in series with the resistors to measure the current in the circuit
- 6. Draw the circuit (in step 5) in the answer sheet
- 7. Turn ON the power supply.
- 8. Read the measured value of current. Record the value in the answer sheet.
- 9. Calculate the current in the circuit using Ohm's law and the measured value of resistors. Show your calculation in the answer sheet.
- 10. Measure the voltage drop across each resistor using analog multimeter. Record the value in Table 2.

- 11. Using the value obtained in step 9, calculate the voltage drop across each resistor using Ohm's law and the measured value of resistors. Record the value in Table 2.
- 12. Using the values obtained in step 11, show the calculation to prove the Kirchhoffs voltage law in the answer sheet.
- Referring to the circuit in Figure 1.1 of the answer sheet, calculate the voltage drop across each measured resistor using the voltage divider rule. Record the values in Table 2.

PART B: DESIGN A VOLTAGE DIVIDER CIRCUIT

Procedures:

1. Connect the circuit shown in Figure 1.2 with the variable resistor, R_L in series.

- 2. Connect the analog multimeter across the variable resistor, R_L. Adjust the setting of variable resistor to obtain a voltage drop of 5 V across it. Record the adjusted value in the answer sheet.
- 3. Using the voltage divider rule on the measured resistance value, calculate the expected value of variable resistor setting, to obtain the voltage drop of 5 V.

RESISTOR COLOUR CODE

