

Sekolah Pendidikan Profesional dan Pendidikan Berterusan (SPACE)

JABATAN KEJURUTERAAN ELEKTRIK PUSAT PENGAJIAN DIPLOMA (PPD), SPACE UNIVERSITI TEKNOLOGI MALAYSIA KUALA LUMPUR

ELECTRICAL ENGINEERING LABORATORY 2 (DDWE 2701)

ELECTRONICS 1

EXPERIMENT 2 ZENER REGULATOR

EXPERIMENT 2 : ZENER REGULATOR

OBJECTIVES

At the end of this experiment, student should be able to understand the concept of regulation and can explain the operation of zener regulator.

EQUIPMENTS

- 1. DC power Supply
- 2. Multimeter
- 3. Transfomer
- 4. Oscilloscope

COMPONENTS

- 1. Zener diode: 8 V, 1 W (2 units)
- 2. Resistor: 1 k Ω (1 unit), 2 k Ω (1 unit), 500 Ω (1 unit), 4 k Ω (1 unit) and Decade Resistor

Part A: Fix Power Supply (Vs) and Varies Load Resistances (R_L)

Procedure:

- 1. Make a connection as shown in Figure 1.
- 2. Set power supply to 15 V and varies load resistor (R_L) from 500 Ω , 1 k Ω , 3 k Ω , 6 k Ω , 8 k Ω and 10 k Ω .
- 3. Measure V_R , V_Z , V_L , I_S , I_L , I_Z for every changes of R_L and write the answer in Table A.
- 4. From Table A, plot load voltage (V_L) versus resistance (R_L) on the graph in Figure A.

Figure 1

Part B: Fix Load Resistance (RL) and Varies Power Supply (Vs).

Procedure:

- 1. Make a connection as shown in Figure 2.
- 2. Varies power supply from 4 V, 8 V, 15 V, 20 V, 22 V and 25 V. Load resistance (R_L) is fix to 2 k Ω .
- 3. Measure V_R , V_Z , V_L , I_S , I_L , I_Z for every changes of V_S and write the answer in Table B.
- 4. From Table B, plot load voltage (V_L) versus power supply (V_S) on the graph in Figure B.

Figure 2

Part C

- 1. Make a connection as shown in Figure 3.
- 2. Connect Channel 1 Oscilloscope to $V_{Secondary}$ and Channel 2 to V_L . Plot $V_{Secondary}$ and V_L in Figure C in result sheet.

Figure 3

Part D

- 1. Make a connection as shown in Figure 4.
- 2. Connect Channel1 Oscilloscope to $V_{Secondary}$ and Channel 2 to V_L . Plot $V_{Secondary}$ and V_L in Figure D in result sheet.

Figure 4