

Sekolah Pendidikan Profesional dan Pendidikan Berterusan (SPACE)

JABATAN KEJURUTERAAN ELEKTRIK PUSAT PENGAJIAN DIPLOMA (PPD), SPACE UNIVERSITI TEKNOLOGI MALAYSIA KUALA LUMPUR

DIGITAL ELECTRONICS LABORATORY

EXPERIMENT 1 DETERMINATION THE LOGIC LEVEL AND IMPLEMENTATION OF BOOLEAN AND DEMORGAN'S THEOREM

EXPERIMENT 1 : DETERMINATION THE LOGIC LEVEL AND IMPLEMENTATION OF BOOLEAN AND DE MORGAN'S THEOREM

OBJECTIVES:

- 1. Able to use digital lab trainer and logic probe.
- 2. Understand the concept of **logic level** in digital system and learn the fundamental **logic gates** in theory and practice.
- 3. Understand **Boolean Theorems** both in theory and practice and able to verify and implement Boolean Theorems in digital system.
- 4. Understand **De-Morgan's Theorems** both in theory and practice and able and implement De-Morgan's Theorems in digital system.
- 5. Understand the use of IC data sheets.

EQUIPMENTS

- 1. IC: 7400,7402, 7404, 7408 and 7432
- 2. Digital Lab Trainer Kit
- 3. Logic Probe
- 4. IC data sheets

Introduction to Digital Lab Trainer kit and logic probe

Brief discussion about the function of Digital Lab Trainer.

No	Part	Functions
1	Voltage Source	supply +5 Vdc.
2	LED Display	ON = logic HIGH (1), OFF = logic LOW (0).
3	Data Switch	logic input, position of switch indicate the logic level UP = logic
		HIGH (1), DOWN = logic LOW (0).
4	Pulse Switch	produce a HIGH logic when the switch is pressed.
5	Protoboard	place for build the circuit.
6	DVM Display	Digital Volt Meter.

Brief-discussion about the function of logic probe.

Logic probe is used for testing the logic level. The use of it is as follows:

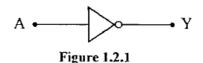

- 1. Set the switch of logic probe to TTL or CMOS depend on the logic family.
- 2. The point tested must be touch carefully with the logic probe needle.
- 3. The LEVEL LED at logic probe indicates the logic level at the test point. If the LEVEL LED flashes a GREEN light, it means that the point is logic HIGH, Logic LOW is indicated by no light display at the LEVEL LED.

EXPERIMENTS PROCEDURES:

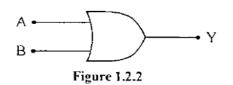
Part 1 : Logic Level analysis and fundamental of logic gates

1.1 Logic Level Analysis

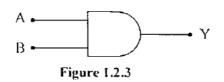
- 1. Build the circuit as shows in Figure 1.1.
- Set logic probe to TTL. Determine voltage values of V_{H(max)}, V_{H(min)}, V_{L(max)} and V_{L(min)} by adjusting variable resistor (R₂) and by Observing the status or logic probe whether it is ON Of OFF for corresponding voltage levels. Complete Table 1.1 in result sheet.
- 3. Repeat procedure 1.1.2 for CMOS.



1.2 Fundamental of Logic Gates


A: IC 7404 (NOT gate)

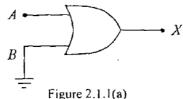
- 1. Refer to Figure 1.2.1, connect A to data switch, Y to DVM. Test point Y using logic probe.
- 2. Complete Table 1.2.1 in result sheet. Write logic (1 or 0) in column A and Y and write the voltage reading in column Y (V).

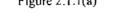

B: IC 7432 (OR gate)

- 1. Refer to Figure 1.2.2, connect A and B to data switch. Y to DVM. Test point Y using logic probe.
- 2. Complete Table 1.2.2.

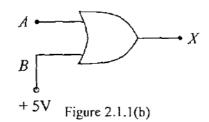
C: IC 7408 (AND gate)

- 1. Refer to Figure 1.2.3, connect A and B to data switch. Y to DVM. Test point Y using logic probe.
- 2. Complete Table 1.2.3.




Part 2 : Verification of Boolean Theorems and De Morgan's theorem

2.1 Verification of Boolean Theorem


A: OR Gate

- 1. Built the circuit shown in Figure 2.1.1 (a), connect A to data switch and fix input (B) to ground. Test point X using logic probe or by connecting to a LED in the trainer.
- 2. Complete Table 2.1.1 (a). Write the status of logic probe or LED (ON or OFF).

- 3. Built the circuit shown in Figure 2.1.1(b), connect A to data switch and fix input (B) to +5V. Test point X using logic probe or by connecting to a LED in the trainer.
- 4. Complete Table 2.1.1 (b).
- 5. Give your brief conclusion from the result of Experiment 2.1.1 (a) and 2.1.1(b).

B: AND Gate

- 1. Built the circuit shown in Figure 2.1.2(a), connect A to data switch and fix input (B) to ground. Test point X using logic probe or by connecting to a LED in the trainer.
- 2. Complete Table 2.1.2(a).

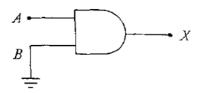


Figure 2.1.2(a)

- 3. Built the circuit shown in Figure 2.1.2(b), connect A to data switch and fix input (B) to +5V. Test point X using logic probe or by connecting to a LED in the trainer.
- 4. Complete Table 2.1.2(b).
- 5. Give your brief conclusion from the result of Experiment 2.1.2(a) and 2.1.2(b)

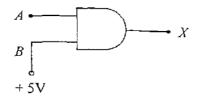


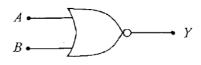
Figure 2.1.2(b)

2.2 : Verification and the use of Boolean Theorem

i. Draw a logic circuit for expression,

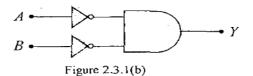
$$f_1(x, y, a, b) = (x + \overline{x}y) + a\overline{b}$$

- ii. Complete Table 2.2.1, a truth table for f_1 ,
- iii. Draw a logic circuit for expression f₂,

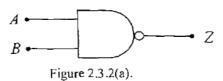

$$f_2(x, y, a, b) = x + y + a\overline{b}$$

- iv. Built a circuit for expression $f_{2,r}$
- v. Complete Table 2.2.2, a truth table for $f_{2,}$
- vi. Compare Table 2.2.2 and Table 2.2.1, and then give your conclusions from the result of Experiment Part C.
- vii. Prove the equivalence of these two expressions (f_1 and f_2) using Boolean theorems.

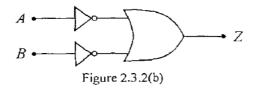
Part 2.3 : Verification of DeMorgan's Theorems


A: Verify the equality between NOR and Negative-AND gates.

- 1. Refer to Figure 2.3.1 (a) and complete Table 2.3.1 (a), the truth table for NOR gate. No need to do the experiment.
- 2. Write the expression for Y.



- 3. Construct the circuit of Figure 2.3.1 (b). Connect *A* and *B* to data switch and monitor the output *Y* using logic probe or by connecting to LED in the trainer.
- 4. Complete Table 2.3.1(b).
- 5. Write the expression for *Y*.
- 6. Compare Table 2.3.1(b) and Table 2.3.1 (a), and then give your comments.



B: Verify the equality between NAND and Negative-OR gates.

- 1. Refer to Figure 2.3.2(a) and complete Table 2.3.2(a), the truth table for NAND gate. No need to do the experiment.
- 2. Write the expression for Z.

- 3. Construct the circuit of Figure 2.3.2(b). Connect *A* and *B* to data switch and monitor the output Z using logic probe or by connecting to LED in the trainer.
- 4. Complete Table 2.3.2(b).
- 5. Write the expression for Z
- 6. Compare Table 2.3.2(b) and Table 2.3.2(a), and then give your comments.

Update: December 2018 (Ts. Rosdina R)