

Sekolah Pendidikan Profesional dan Pendidikan Berterusan (SPACE)

JABATAN KEJURUTERAAN ELEKTRIK PUSAT PENGAJIAN DIPLOMA (PPD), SPACE UNIVERSITI TEKNOLOGI MALAYSIA KUALA LUMPUR

ELECTRICAL ENGINEERING LABORATORY 2 (DDWE 2701)

CIRCUIT THEORY 2

THEORY & PRELIMINARY LABORATORY 3

SERIES RLC AND RESONANCE

Student name	:
Lecturer	:
Date	:

No.	PO	СО	Student Marks	Marks
1	PO1	CO1		/20

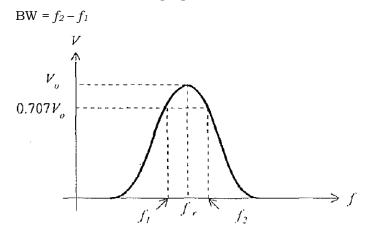
Submit the completed preliminary report in the lecturer in the lab before the lab session starts.

Update: November 2017

THEORY

Inductive reactance, X_L and capacitive reactance, X_C , are frequency dependent. The inductive reactance increases with frequency according to the following equation;

$$X_L = 2\pi f L$$


On the other hand, the capacitive reactance decreases with frequency and can be calculated as follows;

$$X_C = \frac{1}{2\pi fC}$$

There is a frequency at which the inductive reactance is equal 10 the capacitive reactance. This frequency is called resonant frequency, f_1 and can be determined using the following equation;

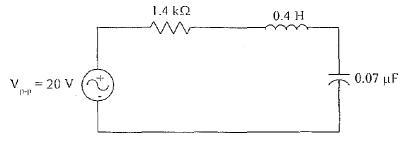

$$f_1 = \frac{1}{2\pi\sqrt{LC}}$$

Figure 1 shows the response of series resonant circuit f_1 , is the resonant frequency while f_1 and f_2 are located at 70.7% of the maximum value of the graph. The frequency f_1 is known as the lower cutoff frequency while f_2 is the upper cutoff frequency. Both f_1 and f_2 are called the half-power points and the frequency separation between them is called the bandwidth (BW) of the circuit. The bandwidth can be obtained from the following equation,

PRELIMINARY WORK

1. Given a series RLC circuit as shown in Figure 2.

2. Calculate the resonant frequency, f_r .

		PO1	CO1	•••••	/2m	
3.	Using the frequency, f_r obtained in (2), calculate					

i. the inductive reactance, X_L .

ii.	the capacitive	e reactance, X _C .
-----	----------------	-------------------------------

	PO1	CO1	•••••	/2m
iii. the total impedance of the circuit. Z.				

PO1 CC	D1	/2m
--------	-----------	-----

PO1

CO1

.....

/2m

iv. the total current in the circuit, I.

|--|

v. the voltage across the resistor (V_R), inductor (V_L) and capacitor (V_C).

PO1 CO1	/6m	
---------	-----	--

vi. draw the phasor diagram for $V_{\text{R}},\,V_{\text{L}},\,V_{\text{C}}$ and I.

PO1	CO 1	••••	/4m