JABATAN KEJURUTERAAN ELEKTRIK PUSAT PENGAJIAN DIPLOMA (PPD), SPACE UNIVERSITI TEKNOLOGI MALAYSIA KUALA LUMPUR

ELECTRICAL ENGINEERING LABORATORY 2 (DDWE 2701)

CIRCUIT THEORY 2

THEORY \& PRELIMINARY LABORATORY 4

TWO PORT NETWORK

Student name	:
Lecturer	$:$
Date	$:$

No.	PO	CO	Student Marks	Marks
1	PO1	CO1		$/ 10$

Submit the completed preliminary report to the lecturer in the lab before the lab session starts.

THEORY

A two port network as shown in Figure 1 is defined as a network having two pairs of terminals. known as terminals $1-1^{\prime}$ and $2-2$. Current I_{1} leaves terminal 1, enters the two-port network and exits at terminal 1^{\prime}. Similarly, current I_{2}, leaves terminal 2, enters the two-port network and exits at terminal 2 '.

$$
1_{1}=1_{1}
$$

$$
\mathrm{I}_{2}=\mathrm{I}_{2}
$$

Figure 1

The parameters of the two port network describe the network behavior in terms of the voltage and current at each port. Four types of two-port parameters that are commonly used are impedanceparameter Z, admittance-parameter Y , hybrid-parameter hand transmission-parameter, T or ABCD . The two-port network equations that relate the variables in the network are given below. Z-parameters :
(1)

$$
\begin{aligned}
& V_{1}=Z_{11} I_{1}+Z_{12} I_{2} \\
& V_{2}=Z_{21} I_{1}+Z_{22} I_{2}
\end{aligned}
$$

Y-parameters:

$$
\begin{align*}
& I_{1}=y_{11} V_{1}+y_{12} V_{2} \tag{2}\\
& I_{2}=y_{21} V_{1}+y_{22} V_{2}
\end{align*}
$$

h-parameters:

$$
\begin{align*}
& V_{1}=h_{11} I_{1}+h_{12} V_{2} \tag{3}\\
& l_{2}=h_{21} l_{1}+h_{22} V_{2}
\end{align*}
$$

ABCD-parameters:

$$
\begin{align*}
& \mathrm{V}_{1}=\mathrm{A} \mathrm{~V}_{2}-\mathrm{BI}_{2} \tag{4}\\
& \mathrm{I}_{1}=\mathrm{C} \mathrm{~V}_{2}-D \mathrm{I}_{2}
\end{align*}
$$

Z-parameters can be determined using open-circuit conditions at terminals 1-1' and 2-2'. When terminals 2-2'are opened, $I_{2}=0$, thereby using equation (1), Z_{11} and Z_{21} can be determined as follows:

$$
Z_{11}=\left.\frac{V_{1}}{l_{1}}\right|_{I_{2}=0} \quad z_{21}=\left.\frac{V_{2}}{I_{1}}\right|_{1_{2}=0}
$$

When terminals 1-1'are opened, $I_{1}=0$, then by using equation $(1), Z_{12}$ and Z_{22} can be determined as follows:

$$
\mathrm{z}_{12}=\left.\frac{\mathrm{V}_{1}}{\mathrm{l}_{2}}\right|_{\mathrm{I}_{1}=0} \quad \mathrm{z}_{22}=\left.\frac{\mathrm{V}_{2}}{\mathrm{l}_{2}}\right|_{\mathrm{l}_{1}=0}
$$

Y-pararneters can be determined using short-circuit conditions at terminals 1-1' $\left(\mathrm{V}_{1}=0\right)$ and terminals 2-2' $\left(\mathrm{V}_{2}=0\right)$. To obtain h -parameters and ABCD-parameters, both short-circuit and open-circuit conditions are required. The equations for all the parameters are given in Attachment 1.

The T-network as shown in Figure 2 is the simplest form of a two port network. Z-parameters of the T-network can be simply determined using mesh analysis.

Figure 2 : T-network
Another form of a two-port network is the π-network as shown in Figure 3. Y-parameters of the π-network can be easily determined by using nodal analysis.

Figure 3 : π-network

PRELIMINARY WORK

1. Given a T-network as shown in Figure 4, determine the Z-parameters using mesh analysis.

Figure 4

Answer

PO1	CO1	$\ldots \ldots .$.	$/ 5 \mathrm{~m}$

2. Given a π-network as shown in Figure 5, determine Y-parameters using node analysis.

Figure 5

Answer

PO1	CO1	$\ldots \ldots .$.	/5m

ATTACHMENT 1 : 2-PORT NETWORK PARAMETERS

Z - parameters

$$
z_{11}=\left.\frac{v_{1}}{l_{1}}\right|_{I_{2}=0} \quad z_{21}=\left.\frac{v_{2}}{l_{1}}\right|_{I_{2}=0} \quad z_{12}=\left.\frac{v_{1}}{l_{2}}\right|_{I_{1}=0} \quad z_{22}=\left.\frac{v_{2}}{l_{2}}\right|_{I_{1}=0}
$$

Y-parameters

$$
y_{11}=\left.\frac{l_{1}}{v_{1}}\right|_{v_{2}=0} \quad y_{21}=\left.\frac{l_{2}}{v_{1}}\right|_{v_{2}=0} \quad y_{12}=\left.\frac{1_{2}}{v_{2}}\right|_{v_{1}=0} \quad y_{22}=\left.\frac{l_{2}}{v_{2}}\right|_{v_{1}=0}
$$

h-parameters

$$
h_{11}=\left.\frac{v_{1}}{I_{1}}\right|_{V_{2}=0} \quad h_{21}=\left.\frac{l_{2}}{l_{1}}\right|_{V_{2}=0} \quad h_{12}=\left.\frac{v_{1}}{V_{2}}\right|_{l_{1}=0} \quad h_{22}=\left.\frac{l_{2}}{v_{2}}\right|_{I_{1}=0}
$$

ABCD-parameters
$A=\left.\frac{V_{1}}{V_{2}}\right|_{I_{2}=0}$
$B=\left.\frac{-V_{1}}{I_{2}}\right|_{V_{2}=0}$
$C=\left.\frac{1_{1}}{V_{2}}\right|_{I_{2}=0}$
$D=\left.\frac{-1_{1}}{1_{2}}\right|_{V_{2}=0}$

