

PROGRAM KEJURTERAAN ELEKTRIK PUSAT PENGAJIAN DIPLOMA (PPD), SPACE UNIVERSITI TEKNOLOGI MALAYSIA KUALA LUMPUR

MECHATRONICS ENGINEERING LABORATORY (DDWE 3711) ELECTRICAL MACHINE AND DRIVES

EXPERIMENT 2 THREE PHASE RECTIFIER CIRCUITS

Group members	1.
	2.
	3.
	4.
	5.
Lecturer	:
Date	:

No.	PO	СО	Student Marks	Marks
1	PO1	CO1		40%
2	PO2	CO3		50 %
3	PO8	C06		10%
	*	Fotal Marks		/100%

TITLE: THREE PHASE RECTIFIER CIRCUITS

OBJECTIVES;

After doing this experiment, you will be able to:

- 1. Construct three pulse and six pulse rectifier circuits.
- 2. Identify the output voltage of the three pulse and six pulse rectifier circuits.
- 3. Understand the function of uncontrolled and controlled rectifier circuits.

EQUIPMENTS;

- 1. Lab volt experimental panel
- 2. Power supply module (8821-2A)
- 3. Resistive load module (8311-0A)
- 4. Inductive load module (8321-0A)
- 5. Power diode module (8842-1A)
- 6. Data acquisition module (9062-15)
- 7. Power tyhristors module (8841-2A)
- 8. Firing tyrhristor unit (9030-30)
- 9. Desktop

COMPONENTS;

1. Wire jumper

PART A

Three-phase: Three pulse rectifier using power diode

Setting up the equipment and procedures;

- 1. Install the Power supply (8821-2A), resistive load (8311-0A), inductive load (8321-0A), power diode module (8842-1A), and data acquisition module (9062-15).
- 2. Set up the circuit of **Figure 1** using resistive load (8311-0A). *Make sure power diode set the switch* **S1** *on the power diodes module to the position* **0**.

Figure 1

Note;

You will use virtual ammeter and voltmeter throughout the lab session. The lab instructor will show you how to use computer based data acquisition system.

- 3. Set load, **R** = **2400** Ω .
- 4. On the power supply, make sure that the voltage control selector is set to the **4-5** position. Switch **ON** the power supply, turn the voltage control knob so that the voltage indicated by the power supply voltmeter is **100 V**.
- 5. Print or save the voltage and current waveform displayed on the scope (monitor screen).
- 6. Record the output voltage, current and power of the rectifier in the first row of **Table 1**.
- 7. Set the voltage control knob to the **0** position and turn **OFF** the power supply.
- 8. Change the load in the circuit to the inductive load (8321-0A). Connect the resistor and inductor in series and set up the \mathbf{R} = 2400 Ω and \mathbf{L} = 7.6 \mathbf{H} .

PO1 CO1

- 9. Switch **ON** the power supply, turn the voltage control knob so that the voltage indicated by the power supply voltmeter is **100 V**.
- 10. Complete the **Table 1**.
- 11. Set the voltage control knob to the **0** position and switch **OFF** the power supply.

Load	Output Voltage	Output Current	Output power
	(E_3)	(I_1)	$Po = E_3 \times I_1$
	(Volt)	(Ampere)	(Watt)
1. Resistive (R=2400 Ω)			
2. Inductive			
(R=2400 Ω, L=7.6 H)			

Table 1

What is the effect of the inductive load on the operation of the circus	it?			
	• • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
	PO1	CO1	•••••	/5m

Compare the following characteristics of a three pulse rectifier to those of a single phase bridge rectifier in experiment 1.

Average output voltage:

Compare the output voltage of the circuit to the theoretical value.

Theoretical value: $E_3 = 0.675$ Es = V dc. (Es = 100 V)

Measured value : $E_3 = \dots V dc$.

PO1	CO1		/5m
		• • • • • • • • •	

PART B

Three phase: Six pulse rectifier using power diode

Setting up the equipment and procedures;

- 1. Install the Power supply (8821-2A), resistive load (8311-0A), inductive load (8321-0A), power diode module (8842-1A), and data acquisition module (9062-15).
- 2. Set up the circuit of **Figure 2** using resistive load. To simplify the connecting the power diode set the switch **S1** on the power diodes module to the position **1**.

Figure 2

Note;

You will use virtual ammeter and voltmeter throughout the lab session. The lab instructor will show you how to use computer based data acquisition system.

- 3. Set load, **R** = **2400** Ω .
- 4. On the power supply, make sure that the voltage control selector is set to the **4-5** position. Switch **ON** the power supply, turn the voltage control knob so that the voltage indicated by the power supply voltmeter is **100 V**.
- 5. Print or save the voltage and current waveform displayed on the scope (monitor screen).
- 6. Record the output voltage, current and power of the rectifier in the Table 2.
- 7. Set the voltage control knob to the **0** position and turn **OFF** the power supply.

- 8. Change the load in the circuit to the inductive load (8321-0A). Connect the resistor and inductor in series and set up the \mathbf{R} = 2400 Ω and \mathbf{L} = 7.6 \mathbf{H} .
- 9. Switch **ON** the power supply, turn the voltage control knob so that the voltage indicated by the power supply voltmeter is **100 V**.
- 10. Complete the **Table 2**.
- 11. Set the voltage control knob to the **0** position and switch **OFF** the power supply.

Load	Output Voltage	Output Current	Output power	Conduction
	(E ₃)	(I_1)	$Po = E_3 \times I_1$	angle
	(Volt)	(Ampere)	(Watt)	
1. Resistive (R=2400 Ω)				
2. Inductive				
(R=2400 Ω, L=7.6 H)				

Table 2

	PO1	CO1	/5m
What is the effect of the inductive load on the operation of the circu			
	PO1	CO1	/5m
Compare the following characteristics of a three pulse rectifier to the	ose of a	a six pı	alse rectifier.
Compare the output voltage of the circuit to the theoretical value. Theoretical value: $E_3 = 1.35 E_8 = V dc.$ (Es = 100 V)			
Measured value : $E_3 = \dots V dc$.	201	201	
	PO1	CO1	/5m

PART C Three phase: Three pulse rectifier using power thyristor

1. Set up the circuit of **Figure 3**. Use a resistive load. The value of the resistor is **1200** Ω .

Figure 3

- 2. Set the main power switch to 1 (ON) and the voltage selector to **4-5** position. Vary the voltage control knob so that the voltage indicated by the power supply volt meter is equal to **100 V**.
- 3. Set the rocker switch of the Enclosure/Power Supply and the 24 V ac power switch to the 1(ON) position. Then, make the following settings on the **firing unit**:

ANGLE CONTROL COMPLEMENT	0
ANGLE CONTROL ARC COSINE	0
FIRING CONTROL MODE	3~
DC SOURCE	MIN

- 4. Now, vary the firing angle and observe the waveforms.
- 5. Set the firing angle and record the result in **Table 3**.
- 6. Print or save the voltage and current waveform displayed on the scope (monitor screen) for the firing angle **0°**, **40°** and **100°**. (Please check with the instructor)
- 7. After completing this experiment, please make sure you set the voltage control knob to **0** then switch off the power supply.

Firing Angle (°)	Output Voltage	Output Current	Output power
	(E_2)	(I ₁)	Po = $E_2 \times I_1$, W
	(Volt)	(Ampere)	
0°			
10°			
20°			
40°			
60°			
80°			
100°			

Table 3

PO1 CO1 /5m

PART D

Three phase: Six pulse rectifier using power thyristor

1. Set up the circuit of **Figure 4**. Use a resistive load. The value of the resistor is **1200** Ω .

Figure 4

- 2. Set the main power switch to 1 (ON) and the voltage selector to **4-5** position. Vary the voltage control knob so that the voltage indicated by the power supply volt meter is equal to **100 V**.
- 3. Set the rocker switch of the Enclosure/Power Supply and the 24 V ac power switch to the 1(ON) position. Then, make the following settings on the **firing unit**:

ANGLE CONTROL COMPLEMENT	0
ANGLE CONTROL ARC COSINE	0
FIRING CONTROL MODE	3~

PO1 CO1

/5m

DC SOURCE ---- MIN

- 4. Now, vary the firing angle and observe the waveforms.
- 5. Set the firing angle and record the result in **Table 4**.
- 6. Print or save the voltage and current waveform displayed on the scope (monitor screen) for the firing angle **0°**, **40°** and **100°**. (Please check with the instructor)
- 7. After completing this experiment, please make sure you set the voltage control knob to **0** then switch **off** the power supply.

Firing Angle (°)	Output Voltage	Output Current	Output power
	(E_2)	(I ₁)	Po = $E_2 \times I_1$, W
	(Volt)	(Ampere)	
0°			
10°			
20°			
40°			
60°			
80°			
100°			

Table 4

	101	001	
From your observation, what is the relationship between firing angle		-	
		•••••	
	PO1	CO1	/5m
conclusions			
		•••••	

Review Questions

1. V	What is the diode conduction angle in a three pulse rectifier if firing angle set to 0°?
	What is the average output voltage of a three pulse rectifier operating on a line to line voltage of 415 V?
	What is the average output voltage of a six pulse rectifier operating on a line to line voltage of 100 V?
4. V	What are the advantages of a three phase rectifier over a single phase rectifier?
•••••	
5. V	What are the advantages of a six pulse rectifier over of a three pulse rectifier?
	PO1 CO1 /5m

TOTAL MARKS (PO1, CO1) = / 55 marks