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a b s t r a c t

Backscatter information from multibeam echosounders (MBES) have been shown to contain useful
information for the characterisation of benthic habitats. Compared to backscatter imagery, angular
response of backscatter has shown advantages for feature discrimination. However its low spatial
resolution inhibits the generation of fine scale habitat maps. In this study, angular backscatter response
was combined with image segmentation of backscatter imagery to characterise benthic biological
habitats in Discovery Bay Marine National Park, Victoria, Australia. Angular response of backscatter data
from a Reson Seabat 8101 MBES (240 kHz) was integrated with georeferenced underwater video
observations for constructing training data. To produce benthic habitat maps, decision tree supervised
classification results were combined with mean shift image segmentation for class assignment. The
results from mean angular response characteristics show effects of incidence angle at the outer angle for
invertebrates (INV) and mixed red and invertebrates (MRI) classes, whilst mixed brown algae (MB) and
mixed brown algae and invertebrates (MBI) showed similar responses independent from incidence
angle. Automatic segmentation processing produce over segmented results but showed good discrimi-
nation between heterogeneous regions. Accuracy assessment from habitat maps produced overall
accuracies of 79.6% (Kappa coefficient ¼ 0.66) and 80.2% (Kappa coefficient ¼ 0.67) for biota and
substratum classifications respectively. MRI and MBI produced the lowest average accuracy while INV the
highest. The ability to combine angular response and backscatter imagery provides an alternative
approach for investigating biological information from acoustic backscatter data.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Seabed habitatmapping is key to understanding the distribution
of habitats in marine environments since it provides baseline
knowledge for sustainable management (Bax et al., 1999) and is
essential for planningofMarine ProtectedAreas (Jordan et al., 2005).
In an environmentwith increasing anthropogenic activities, there is
a need to map and quantify seafloor habitats and associated bio-
logical benthic communities (Kostylev et al., 2001; Beaman et al.,
2005; Brown and Collier, 2008). Benthic habitats, particularly the
biological communities have been shown to have important biodi-
versity roles in a variety of marine systems (Snelgrove, 1997).

The development of underwater acoustic technology, particu-
larly multibeam echosounder systems (MBES) has revolutionised
tools for seabed habitat mapping (Hughes Clarke et al., 1996). The
edu.au, iero@deakin.edu.au
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wide swath of MBES provides complete and full seabed acoustic
coverage compared to single beam echosounders. In addition to
acquiring depth information, backscatter (intensity of acoustic
return) from MBES systems has also been used for a variety of
applications such as geological analysis (Gardner et al., 2003; Le
Gonidec et al., 2003; Dartnell and Gardner, 2004) and more
recently benthic habitat characterisation (Ierodiaconou et al.,
2007a, 2011; McGonigle et al., 2009; Rattray et al., 2009; De Falco
et al., 2010; McGonigle et al., 2011).

While MBES bathymetry and backscatter imagery maps are
being increasingly used for habitat mapping, analysis of angular
dependent backscatter (i.e. angular backscatter response) has also
been shown to contain important information on seafloor charac-
teristics (Hughes Clarke, 1994; Fonseca and Calder, 2007; Fonseca
et al., 2009). Incidence angle affects backscatter intensity (de
Moustier and Alexandrou, 1991) and thus has the potential to be
used as an important characteristic for classification processes. The
use of parameter extractions and inversion models using angular
response information has been extensively applied to discriminate
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between different sediment types (Hughes Clarke, 1994; Hughes
Clarke et al., 1997; Chakraborty et al., 2000, 2002; Canepa and
Berron, 2006; Fonseca and Mayer, 2007; Fonseca et al., 2009;
Lamarche et al., 2010). Efforts have been made to relate angular
response to benthic biological communities using unsupervised
clustering (Hamilton and Parnum, 2011). The results (presented as
point sample characterisations) demonstrate some similarities
with the biological habitats such as rhodolith and seagrass areas
previously mapped (Ryan et al., 2007). Additionally, the mean
angular response from seagrass was found to be higher than sand
and mud (Siwabessy et al., 2006) but similar to gravelly sand (De
Falco et al., 2010). However to date there has been limited work
investigating information contained within angular response to
characterise benthic communities such as macro-algae communi-
ties typical in cool temperate waters of Australia (Phillips, 1998;
James et al., 2001; Wernberg et al., 2003).

Whilst angular response is applicable for the discrimination
process, its spatial resolution is limited to the MBES swath width
(Hughes Clarke, 1994; Hughes Clarke et al., 1997) and inhibits the
construction of fine resolution habitat maps. Fonseca et al. (2009)
demonstrates that fine resolution benthic sediment maps can be
constructed by integrating high resolution backscatter imagery
with angular response analysis. They apply a manual segmentation
method to the backscatter imagery to define areas that have similar
angular response characteristics and recommend that automated
image segmentation could be a more systematic approach. Auto-
mated image segmentation serves as a first stage in the object
Fig. 1. Location map of Discovery Bay and backscatter imagery of study area together with t
position) represented by white circles.
oriented classification approach and has been successfully applied
to side-scan sonar backscatter imagery for reef based classifications
(Lucieer, 2007, 2008). Meanwhile, automated feature extraction has
been applied to MBES backscatter imagery to perform automated
image classification (Cutter et al., 2003; Preston, 2009). This study
will investigate whether automated image segmentation of back-
scatter imagery can be combined with the supervised classification
of angular response to produce benthic biological habitat maps.

2. Methods

2.1. Study area

The study area is located in Discovery Bay, south-eastern Aus-
tralia and covers a total area of 39.8 km2, with 26.3 km2 situated in
the Discovery Bay Marine National Park (Fig. 1). The site ranges in
depth from 12 to 80 m. Vertical basalt reef structures rise up to
20 m from the seafloor, reflecting the region’s dynamic volcanic
history (Boutakoff, 1963). This area is covered in a rich array of
temperate southern Australian flora and fauna. The shallow reef
structures support diverse assemblages of red algae and kelps
(dominated by Ecklonia radiata, Phyllospora comosa and Durvillaea
potatorum), while the deeper regions are covered in sponges,
ascidians, bryozoans and gorgonian corals (Ierodiaconou et al.,
2007b). The variety of temperate marine habitats present in this
site makes it ideal for testing the association of acoustic response
with habitat classes.
he location of underwater georeferenced video data (intersected with angular response



Table 1
The distribution of angular response data used for training and for accuracy
assessment (biota and substratum). For accuracy assessment process, only the
position and class of angular response are used.

Number of angular
response used for
training

Number of angular
response used for
accuracy assessment

Biota Class
Mixed Brown algae 66 26
Invertebrates 556 233
Mixed Red algae

and Invertebrates
66 28

No Visible Biota 432 183
Mixed Brown

and Invertebrates
25 11

Sum 1145 481
Substratum Class
Reef 171 72
Sediment 589 252
Reef/Sediment 423 177
Sum 1183 501
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2.2. MBES acoustic data

The acoustic data was collected using a Reson Seabat 8101
multibeam echo sounder (MBES) from 6 to 7 November 2005 with
an operating frequency of 240 kHz, designed specifically for
shallow water surveying purposes. This swath system consists of
101 individual beams and each beam has a beamwidth of 1.5�

(along and across track). Horizontal positioning was accomplished
using a Starfix HP Differential GPS system (�0.30 m), integrated
with a POS MV (Positioning and Orientating System for Marine
Vessels) for heave, pitch, roll and yaw corrections (þ0.02� accu-
racy). Daily sound velocity profiles were collected to correct for
water column sound speed variations (deepest at 73 m).

The uncorrected backscatter amplitudes (snippets) were recor-
ded from the Seabat 8101 and archived for subsequent post pro-
cessing. We employed the Centre for Marine Science and
Technology’s (CMST) multibeam sonar processing toolbox, written
in Matlab� to process the amplitude data (Parnum, 2007). The
CMST tool corrects for the time variable gain (TVG) in order to
estimate the backscatter intensity strength. At this stage, the
backscatter intensity strength is affected by the incidence angle,
hence it is known as the angular backscatter intensity. To generate
a backscatter map (backscatter imagery), first angular backscatter
intensity needs to be compensated for the angular variation
(Parnum, 2007), then it is gridded (5 m). We produced the angular
response curve that is the average of angular backscatter intensity
from stacks of 25 consecutive pings, defined by one spatial coor-
dinate with port and starboard sides treated separately. The
detailed description of CMST tool processing stage and algorithms
can be found in Parnum (2007). The tool has been applied to study
the relationship between backscatter and seagrass distribution (De
Falco et al., 2010) and differentiate between benthic biological
habitats using the unsupervised clustering of angular response
curves (Hamilton and Parnum, 2011).

2.3. Ground truth data

To determine benthic habitat associations with angular
response, a training dataset was required to label angular response
with defined user classes. Georeferenced underwater video data
were collected and classified as part of the Victorian Habitat
Mapping Project to investigate the distribution of benthic biological
habitats in coastal waters of Victoria. The underwater video was
collected using a Remotely Operated Vehicle (ROV) and positioned
using DGPS and Tracklink Ultra Short Base Line (USBL) underwater
acoustic system, with vessel errors (roll, pitch and yaw) corrected
using a KVH (KVH Industries, Inc.) motion sensor (Rattray et al.,
2009). The classified video produced five broad biota classes;
Mixed Brown algae (MB), Invertebrates (INV)e sponges, Mixed Red
algae and Invertebrates (MRI), Mixed Brown algae and Inverte-
brates (MBI) and No Visible Biota (NVB) and three substratum
classes; Reef (R), Sediment (S) and Reef/Sediment (RS). We identi-
fied the nearest groundtruth locations to angular response posi-
tions by using an approximate intercept method which selects the
most frequent class within a 10 m radius of each angular response
position. Approximately 70% of the ground data provided a training
label for angular response used in the classification process while
the remaining 30% was selected for accuracy assessment (Table 1).

2.4. Decision tree classification

A decision tree approach was used to create a decision rule from
the predictor variables (i.e. angular response curve with known
class signature). The predictor variables were the angular response
of backscatter strength values from 0� to 70� incidence angles (at
one degree intervals). The decision rules generated using the
training data thenwere used to classify the angular response curves
from the remaining locations for class assignment. A decision tree is
defined as a classification procedure that recursively partitions
a dataset into smaller subdivisions on the basis of a set of tests
defined at a branch or node in the tree (Friedl and Brodley, 1997). A
widely known decision tree technique is the Classification and
Regression Tree (CART) (Breiman et al., 1984). CART has been used
to classify substratum types (Rooper and Zimmermann, 2007) and
to predict benthic biological distributions (Holmes et al., 2008).
Several methods have been developed to improve CART decision
trees to avoid over fitting in searching for splitting rules (Gray and
Fan, 2008). Quick, Unbiased and Efficient Statistical Tree (QUEST)
was selected to classify the angular response data. QUESTgenerates
a similar decision tree to CART but it does not use an exhaustive
variable search routine and is unbiased in choosing variables which
afford more splits (Loh and Shih, 1997). QUEST has been used to
predict the biological benthic habitat communities using MBES
data (bathymetry, backscatter and their derivatives) and georefer-
enced underwater video (Rattray et al., 2009; Ierodiaconou et al.,
2011). We used the QUEST executable program available from
http://www.stat.wisc.edu/wloh/quest.html.
2.5. Image segmentation

Image segmentation techniques were used to group pixels with
similar characteristics in the backscatter imagery. We applied the
mean shift image segmentation technique (Comaniciu and Meer,
2002) through the Edge Detection and Image Segmentation
System (EDISON) tool (http://coewww.rutgers.edu/riul/research/
code/EDISON/index.html). Although mean shift image segmenta-
tion is not designed for object oriented classification, a comparison
of segmentation quality between mean shift and other segmenta-
tion techniques (mostly used in remote sensing applications)
shows that it can produce promising results (Neubert et al., 2008).

Mean shift segmentation is based on nonparametric feature
space analysis and uses a kernel density estimation. The spatial
parameter is used to define the radius of the density estimation
search process in feature space until the mean shift vector is
converged (Comaniciu, 1999; Christoudias et al., 2002; Comaniciu
and Meer, 2002). The mean shift segmentation algorithm used
five-dimensional feature space consisting of three colour space
such as RGB (Red, Green and Blue) and two lattice coordinates (X
and Y). If the image is greyscale, the segmentation performs

http://www.stat.wisc.edu/%7Eloh/quest.html
http://www.stat.wisc.edu/%7Eloh/quest.html
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similarly except the feature space consists of only three dimen-
sions; the grey value and the lattice coordinates. Since the
segmentation tool (i.e. EDISON) cannot handle an intensity image
(floating point image) directly, we applied a pseudo colour image
transformation (RGB) in Matlab. A pseudo colour image offers more
than one colour parameter and has been shown to provide addi-
tional information for the segmentation process when compared to
greyscale imagery (Cheng et al., 2001, 2002). Pseudo colour image
transformations have been applied in remote sensing applications
such as change detection and have shown to provide rich and
informative attribute from analogue maps (Saraf, 2003). We ran
segmentation using the three main parameters, spatial
resolution ¼ 7, colour resolution ¼ 6.5 and minimum
region ¼ 100 pixels. All parameters were default except for the
minimum region that was changed from 20 to 100 pixels to avoid
generating too many small regions.

2.6. k nearest neighbour

The segmented regions (polygons) were joined with the spatial
information of angular response and the predicted class (from the
supervised classification process) so that all the polygons were
assigned class information. This was done by computing the poly-
gon centroid and using k nearest neighbour (k ¼ 7) to search the
nearest majority angular response class and assign class names to
polygon centroid. We employed nearest neighbour algorithm as
described in Theodoridis et al. (2010). Themaps produced using the
above methods were evaluated using the independent ground
truth class information. We use an error matrix to measure indi-
vidual class accuracy (user and producer accuracy), overall accuracy
and Kappa coefficients (Congalton, 1991).

3. Results

3.1. Angular response characteristic from ground truth

The shape of mean angular response from the biota class
showed that MB and MBI produced a similar profile (Fig. 2a), with
MBI slightly higher than MB (Fig. 3a), especially from 20� to over
60� incidence angle. The differences of mean angular response
between MBI and MB consistently increased with incidence angle
(maximum differences ¼ 1.3 dB at 63�) (Fig. 3b). These responses
indicate that the presence of invertebrate (sponge dominated
habitat) could produce a small increment of backscatter intensity in
MBI compared to MB class (brown algae). INV and MRI show good
separation in backscatter intensity as the incidence angle increased
above 50� (Fig. 2a) with the curves reducing drastically at 50� (INV)
and 60� (MRI). These results show that the outer angle (55e70�)
Fig. 2. Mean angular response curves for b
has strong discrimination characteristic for INV and MRI compared
to the near (0e15�) and moderate incidence angle (15e55�).

Substratum classes were more easily distinguished compared to
biota from the mean angular response (Fig. 2b). Although they have
similar curve responses from 0� to 30�, the moderate and outer
angles provide separation for all classes. Reef class was found to
have the highest backscatter intensity at the outer angle. Sediment
and Reef/Sediment classes differed significantly from 30� to 50�

and produced almost similar backscatter intensity towards 70�. The
mean angular response from substratum class shows that Reef/
Sediment response was the combination of responses between
Sediment and Reef classes, particularly from 30� to 70�. The effect
of incidence angle for substratum classes was more pronounced
compared to biota.

3.2. Segmentation of backscatter imagery

Segmentation of the backscatter imagery shows that the size of
polygons varies according to the homogeneity of the texture in the
backscatter imagery and was capable of delineating between
regions of differing backscatter characteristics (Fig. 4a). The
segmentation process produced 5323 segmented regions with an
average 365 pixels per segment. Nadir artefacts from individual
survey lines appeared to affect some of the polygon boundary and
shapes. Small polygons were also observed and produced over
segmentation results. However, by performing the k nearest
neighbour analysis, most of the smaller polygons were grouped
into the majority surrounding class, minimising the effect of over
segmentation in the final habitat map and reduced nadir boundary
artefacts (Fig. 4c).

3.3. Accuracy assessment

The integration of the image segmentation of backscatter
imagery and the supervised classification of the angular response
enabled the construction of habitat maps for biota and substratum
presented in Fig. 5. For biota, the accuracy was 79.6% with Kappa
coefficient 0.66 (Table 2). The average value between user and
producer’s accuracy indicated that MRI has the lowest accuracy
(35%), while INV produced the highest (84%). The results also show
that most of theMRI class wasmisclassified as INV. MB on the other
hand shows a better accuracy (78%) compared to MRI even though
these classes were similar in sample size for training data. MBI has
the smallest number of sample size (25 for training) producing
a poor accuracy (44%).

The substratum classification produced an overall accuracy of
80.2% and Kappa coefficient 0.67 (Table 3). Average accuracy indi-
cates that all three classes achieved accuracies of more than 77%.
iota class (a) and substratum class (b).



Fig. 3. Mean angular response curves (a) and their differences (b) between MBI and MB. MB ¼ Mixed Brown algae, MBI ¼ Mixed Brown algae and Invertebrates.

Fig. 4. Segmented image and angular response classification for generating the habitat map; (a) Polygons produced from mean shift image segmentation overlaid with the original
backscatter imagery, (b) angular response classification results that are represented by angular response position as single point for port or starboard side with different shapes
denote different class, (c) habitat map results from k nearest neighbour process between polygons in 4a and class positions in 4b, with different colours represent different habitat
class.
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Fig. 5. Habitat maps of biota (left) and substratum (right).
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The error matrix shows that Reef was well classified with less
confusion with the other two classes. Despite Reef having the
smallest sample size, it still produced good accuracy (81%).
Although some confusion occurred between Sediment and Reef/
Sediment, the proportions of uncorrected classes were small and
both classes showed good accuracies (83% and 77% respectively).

4. Discussion

This study used angular response and backscatter imagery from
MBES to examine whether they can be integrated to provide useful
information that can be used to predict the distribution of benthic
biological communities. We demonstrate how angular response is
classified using a decision tree classification and automated image
Table 2
Accuracy assessment for biota classification.

Error ma

Biota class MB INV

Classified data

MB 26 6
INV 0 208
MRI 0 2
NVB 0 17
MBI 0 0
Sum 26 233

User’s accuracy (%) 53 79
Producer’s accuracy (%) 100 89
Average accuracy (%) 77 84
Overall accuracy (%) 79.6
Kappa coefficient 0.66

MB ¼ Mixed Brown algae, INV ¼ Invertebrates, MRI ¼ Mixed Red algae and Invertebrat
segmentation of the backscatter imagery and how these two
techniques can be integrated to produce habitat maps for benthic
biological communities. This technique has the advantage of
preserving the spatial resolution from the backscatter imagery,
whilst taking advantage of the valuable information containedwith
the angular response. This information has been effectively used to
discriminate different macro-algae habitats and invertebrate
(sponge) from sediment class (no visible biota). This signifies that
the present approach is capable of distinguishing between hard
(reef based habitats) and soft classes (non reef).

Previous applications of angular response classifications have
mostly concentrated on sediment characterisation (Hughes Clarke,
1994; Hughes Clarke et al., 1997; Canepa and Berron, 2006; Fonseca
and Mayer, 2007; Fonseca et al., 2009; Lamarche et al., 2010) with
trix

Ground truth data

MRI NVB MBI Sum

6 3 8 49
17 37 0 262
3 0 0 5
0 143 0 160
2 0 3 5

28 183 11 481
60 89 60
11 78 27
35 84 44

es, NVB ¼ No Visible Biota, MBI ¼ Mixed Brown algae and Invertebrates.



Table 3
Accuracy assessment for substratum classification.

Error matrix

Ground truth data

Substratum class R S RS Sum

Classified data

R 59 8 7 74
S 5 202 29 236
RS 8 42 141 191
Sum 72 252 177 501

User’s accuracy (%) 80 86 74
Producer’s accuracy (%) 82 80 80
Average accuracy (%) 81 83 77
Overall accuracy (%) 80.2
Kappa coefficient 0.67

R ¼ Reef, S ¼ Sediment, RS ¼ Reef/Sediment.
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recent work applying these methods to biological communities.
Hamilton and Parnum (2011) demonstrated the usefulness of
angular response information for biological habitats (seagrass and
rhodolith) using unsupervised statistical clustering. This study
shows that angular response is capable of differentiating between
different biological habitats on reef structures. The low spatial
resolution of angular response classification can be overcome with
automated segmentation procedures which provide advantages in
terms of repeatability compared to manual digitising methods
previously demonstrated (Fonseca et al., 2009). With the increasing
amount of acoustic backscatter data and coverage that can be
collected through MBES systems (Hughes Clarke et al., 1996), it is
essential that the primary data should be studied and explored in
different ways to determine its full capability and whether it is
useful for alternative applications.

The comparison of mean angular response between biological
habitats in this study provides some information about their
acoustic characteristics. Angular response is a complicated process
derived from the geological and biological nature and upper
morphology of the seabed; factors such as the water/sediment
interface, roughness and the sediment volume structure influence
the response (Canepa and Berron, 2006). In some studies, the
presence of biological habitat (such as seagrass) has been shown to
increase backscatter intensity when compared to sand (Siwabessy
et al., 2006; Parnum, 2007; De Falco et al., 2010) and reef struc-
tures often show higher backscatter intensity than sediment
(Hamilton and Parnum, 2011). Angular response curves for biota
(except MB and MBI) and substratum decreased as the incidence
angle increased, matching the typical shape of the angular response
curve (Hughes Clarke, 1994; Hughes Clarke et al., 1997), particularly
for sediment. Despite the effect from sediment, INV and MRI
(mostly distributed on Reef/Sediment) had angular response curves
similar to sediment at the outer angle while the mean angular
response from biological habitats on reef structures (MB and MBI)
seemed to be independent of the incidence angle.When comparing
these habitats with other biota classes, the angular response curve
was almost horizontal. The results presented here are similar to
those of Siwabessy et al. (2006) who reported that the slope of
mean angular response (between 10� and 35� incidence angle)
from algae on reefs was likely to be small and flat. This shows that
the combination of substratum and biota habitats influences the
angular response characteristic. However, there will be difficulties
in determining which layer contributes most to the scattering
process. A further study using water column data extracted from
MBES backscatter (McGonigle et al., 2011) could be combined with
angular response data to investigate this issue.

The use of decision tree supervised classification has allowed
the production of thematic habitat maps with moderate accuracy
(Congalton and Green, 2009). The accuracy assessment is
a summative process derived from training data, the decision tree
model, image segmentation and joining processes between angular
response classification and the segmented polygons. The accuracy
assessment shows misclassification occurring between MB with
MBI, and MRI with INV. These classes were most likely to be in the
same acoustic group because they share similar species composi-
tion and substratum types and are often differentiated based on
changes in canopy density. Low classification accuracy has been
observed with algal classes that have similar characteristics using
bathymetry, backscatter and their derivatives (Rattray et al., 2009).

The use of mean shift image segmentation in the present study
has been shown to be a useful technique for integration with
angular response classifications to produce benthic habitat maps.
Spatial clustering in the segmentation provides polygons that serve
as base maps for point class information. Segmentation approaches
combined with other classification techniques such as object
oriented classification have been shown to be useful for differen-
tiating sand and reef classes using backscatter from side-scan sonar
(Lucieer, 2007, 2008). By creating polygons from similar adjacent
pixels, the final classification maps can reduce the ‘salt and paper’
effect that commonly appears in pixel based classifications. The
main drawback of image segmentation is that it is easily affected by
under or over segmenting depending on the technique used. Under
segmentation produces large polygons whereas over segmentation
will generate too many smaller polygons. Although over segmen-
tation is observed with mean shift image segmentation in the
present study, their effects have been decreased by taking the
nearest neighbour for angular response class labelling.

The angular response classification presented here (e.g. Fig. 4b)
is useful even when not combined with backscatter image
segmentation. The class information can be mapped as single point
features for the study area at a scale of half the swath width (port
and starboard sides) (Hamilton and Parnum, 2011) and spatial
distribution of each habitat can be recognised and determined.
However, there will be limitations where the results are to be
combined or compared with other small scale map information
such as from the high resolution bathymetric maps. Depth has been
shown to influence the distribution of benthic biological habitat
communities and provides useful information to the habitat clas-
sification using MBES data (Brown et al., 2011). Further investiga-
tion is required to determine whether depth and its derived
seascape metrics can be integrated with angular response classifi-
cation in explaining benthic biological habitat distributions.

The construction of angular response of backscatter is generated
from a number of consecutive sonar pings (port and starboard are
handled separately) which assumes that the seafloor habitat within
this range is homogeneous, which often is not the case as the
variability of seafloor habitats occurs between swaths (Hamilton
and Parnum, 2011). Moreover only single spatial information is
given to each side of the swath to represent the position of the
angular response curve that causes uncertainty when the merging
process is carried out between the angular response position and
the segmented polygons. Some adjacent angular response positions
will overlap which initially should be filtered, since the swath
coverage from the original MBES survey lines is targeted to be at
least 50% overlap. Ambiguity is also caused when assigning video
observation classes to the angular response positions within its
10 m radius. Computing the angular response curve only from
homogeneous segmented regions rather than across the sonar
swath may also improve class differentiation. Techniques of
combining angular response classification with its similar acoustic
region from backscatter imagery such as the acoustic theme
method could be essential in minimising the errors occurred with
angular response position (Fonseca et al., 2009). The segmentation
algorithm used in this study also has limitations because of high
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computational complexity limiting its application for processing
large volumes of data (Wan and Deng, 2011). We found a 5 m pixel
resolution appropriate for our dataset to avoid memory limitations.

5. Conclusion

This study provides techniques to produce benthic biological
habitat maps using the combination of angular response and
backscatter imagery. The use of angular response for supervised
classification is important because backscatter intensity from
different habitats on the seabed is presented at different angles and
provides more information than a single normalised backscatter
value (i.e. backscatter imagery). By combining with mean shift
image segmentation, habitat maps have been successfully gener-
ated. The ability to use angular response and backscatter imagery to
produce habitat maps has improved our understanding of the level
of benthic biological information that can be extracted from MBES
acoustic backscatter. Results from this study have extended angular
response applications from seafloor substrate classifications to
biological habitat mapping. The quantitative analysis of angular
response is not limited to the decision tree technique presented in
this study, with scope to test the performance of other supervised
approaches. Additionally, the role of image segmentation is rec-
ognised as an important tool in the identification of homogeneous
areas to be used for further analysis (i.e. classification process). This
study provides a framework for linking backscatter data with
benthic biological identities and overcomes low spatial resolution
of angular response data for benthic habitat mapping using
acoustic techniques. With a variety of techniques and data available
to generate marine habitat maps, the integration and assimilation
of these datasets allows the extraction of more information to
further understand marine ecosystem processes and provides
a more systematic approach to managing and preserving marine
biodiversity.
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