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Abstract Transfer function models of the rainfall–runoff relationship with various complexities are devel-
oped to investigate the hydrological behaviour of a tropical peat catchment that has undergone continuous
drainage for a long time. The study reveals that a linear transfer function model of order one and noise term
of ARIMA (1,0,0) best represents the monthly rainfall–runoff relationship of a drained peat catchment. The best-
fitted transfer function model is capable of illustrating the cumulative hydrological effects of the catchment when
subjected to drainage. Transfer function models of daily rainfall–runoff relationships for each year of the period
1983–1993 are also developed to decipher the changes in hydrological behaviour of the catchment due to drainage.
The results show that the amount of rain water temporarily stored in the peat soil decreased and the catchment has
become more responsive to rainfall over the study period.

Key words drained peat catchment; rainfall–runoff; transfer function model; ARIMA

Comportement hydrologique d’un bassin versant agricole drainé en zone de tourbière tropicale.
2: Approche de modélisation de la fonction de transfert
Résumé Des modèles de fonction de transfert pluie-débit de complexités diverses ont été construits pour étudier
le comportement hydrologique d′ un bassin versant en zone de tourbière tropicale ayant subi un drainage con-
tinu pendant une longue période. L′ étude a révèlé qu’une fonction de transfert linéaire d’ordre un avec un
terme de bruit ARIMA (1,0,0) est le modèle représentant au mieux la relations pluie-débit d′ un bassin ver-
sant drainé en zone de tourbière à l’échelle mensuelle. Le meilleur ajustement du modèle est capable d′ illustrer
les effets hydrologiques cumulatifs sur le bassin versant lorsqu′ il est soumis à un drainage. Des fonctions de
transfert de la relations pluie-débit à l’échelle journalière ont également été construites pour chaque année de
la période 1983–1993, afin de mettre en évidence les modifications du comportement hydrologique du bassin
en réponse au drainage. Les résultats montrent que la quantité d′ eau de pluie stockée temporairement dans
la tourbe a diminué, et que le bassin est devenu plus sensible aux précipitations au cours de la période d′
étude.

Mots clefs bassin versant drainé en zone de tourbière; pluie–débit; modèle de fonction de transfert; ARIMA

INTRODUCTION

Drainage is widely used in peatlands for lowering
of peat water tables (Holden et al. 2004), reclama-
tion of land for agriculture and other purposes. Land
drainage activities can alter the hydrological char-
acteristics of a catchment which, in turn, may have

potential impacts on peat ecosystems (Holden et al.
2006, Worrall et al. 2007, Langner and Siegert 2009).
To evaluate changes in the hydrological behaviour
of drained catchments, which are often found in
agricultural peatland, a sound understanding of
the hydrological functions is required. Traditionally,
paired-catchment experiments are used to evaluate

© 2013 IAHS Press
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Hydrological behaviour of a drained agricultural peat catchment 1311

the effect of disturbances (Newson and Robinson
1983, Robinson 1990, Brown et al. 2005). However,
this approach is not only time-consuming, but also
requires a properly planned and instrumented catch-
ment. The paired-catchment approach is also unable
to evaluate the relative importance of various fac-
tors (Schellekens 2000). Another easier approach
for evaluating the impacts of disturbances on the
hydrological functions of a catchment is to compare
the hydrological records before and after the catch-
ment has been altered (Newson and Robinson 1983,
Rulli and Rosso 2007). This requires pre- and post-
drainage hydrological data. When neither of the afore-
mentioned approaches is applicable, due to either the
absence of paired catchments or the unavailability
of pre-drainage hydrological records, as experienced
in the present study, alternative approaches such as
deterministic physically-based models or systems-
based (black-box) models are used (Mutua and Al-
Weshah 2005, Mkhandi and Kumambala 2006, Beven
2012). Deterministic physically-based hydrological
models are based on the complex laws of physics,
generally expressed as systems of nonlinear partial
differential equations (Skaggs 1991, Beven 2012).
They are basically parameter-rich models that require
intensive quantitative knowledge of the physical char-
acteristics of the catchment at the spatial level (Zhang
et al. 2009).

Systems-based models rely heavily on systems
theory developed in other branches of engineering
sciences and make little or no attempt to simulate
the individual constituents of hydrological processes
(Mkhandi and Kumambala 2006). The essence of
these models is the empirical discovery of transfer
functions (TF) which inter-relate the input (usually
rainfall) and the output (usually discharge) in the time
domain (Mutua and Al-Weshah 2005, Romanowicz
et al. 2010). In comparison to physically-based
models, the transfer function time series modelling
approach has several advantages (Ali and Dechemi
2004, Young 2006). Physically-based hydrological
models require parameterization and are based on the
predetermined theory of hydrology, whereas a trans-
fer function model is essentially a “black box” (Hipel
and McLeod 1994, Lohani et al. 2011). The transfer
function modelling approach does not require any the-
ory to link the input and output series. In places where
hydrological processes are not clearly defined, such as
in drained peatlands (Katimon et al. 2002), time series
transfer function modelling approaches are found to
be appropriate (Mutua and Al-Weshah 2005).

This is the second of two papers describing the
hydrological behaviour of a drained agricultural peat
catchment in the tropics (Johor, Malaysia). In Part 1
(Katimon et al. 2013), the hydrological data of the
catchment were analysed through conventional quan-
titative hydrological approaches to characterize the
hydrological behaviour of the catchment, as well as
changes in behaviour due to continuous drainage over
a long period. In the present paper, dynamic trans-
fer function models of the rainfall–runoff relationship
with various complexities are developed to under-
stand the changes in the hydrological behaviour of
a tropical peat catchment that has undergone contin-
uous drainage for a long time. Long-term rainfall–
streamflow records obtained from a 184-ha drained
agricultural catchment are used for the study.

STUDY AREA

The study area, located in the peat area of Parit
Madirono in Johor, Malaysia (latitude: 01◦42′35′′ N;
longitude: 103◦16′15′′ E) in the southwest of Penin-
sular Malaysia, and known as Madirono catchment,
is described in detail in Part 1 (Katimon et al. 2013).
A hydrological monitoring programme in this catch-
ment between 1981 and 1996 has provided reliable
long-term hydrological records for the catchment for
use in this study.

METHODOLOGY

Transfer functions (TF) are linear models with which
an output variable can be forecast as a linear weighted
combination of past outputs (stream flow) and inputs
(rainfall). Any residual model error can be repre-
sented through a noise model, which is generally an
autoregressive integrated moving average (ARIMA)
model (Bell et al. 2001, Yuan et al. 2009). The basic
structure of the TF model and the algorithm used to
develop the models in the present study are discussed
below.

Model structure

A single linear TF model representing the relationship
between input and output time series can be expressed
as:

Yt = C + v(B)Xt + Nt (1)

where Yt is the output series or exogenous variables;
Xt is the input series or endogenous variables; C is
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1312 Ayob Katimon et al.

the constant term; v(B) is the dynamic component,
or impulse response function of the model; Nt is
the stochastic noise; and B is the backshift opera-
tor. The stochastic noise Nt may be autocorrelated
and assumed to be independent of Xt. Because the
dynamic term v(B) in equation (1) represents the
dynamic behaviour of serial correlations of Xt at dif-
ferent time lags, it can be written in polynomial form
as (Makridakis et al. 1998):

v(B) = v0 + v1B + v2B2 + · · · + vkBk (2)

where v0, . . . , vk are transfer function weights,
or impulse response weights. Thus, equation (1)
becomes (Makridakis et al. 1998):

Yt = C + (v0 + v1B + v2B2 + · · · + vkBk)Xt + Nt (3)

where k is the order of the transfer function, i.e. the
longest lag in input series Xt.

Parsimonious model structure

The degree of model complexity, as indicated by
the number of parameters, is fundamental to model
developers and model users. An important crite-
rion of a good model is its simplicity or parsimony.
A parsimonious model contains the least number of
coefficients, but adequately explains the behaviour of
the observed data (Ledolter and Abraham 1981, Box
et al. 1994, Chappell et al. 1999). Astrup et al. (2008)
conducted a study to find the appropriate level of com-
plexity for a simulation model, and concluded that the
simplest and the most complex growth functions had
the poorest predictive ability, while functions of inter-
mediate complexity had the best predictive ability.
According to Wagener et al. (2001), careful consid-
eration must be given in using parsimonious models
to ensure that the model does not omit one or more
hydrological processes important for a particular
problem. Beven (1989) suggests that, in spite of the
dozens of parameters normally included in watershed
models, three to five parameters should be sufficient
to reproduce most of the information in a hydrological
record. Jakeman and Hornberger (1993) and oth-
ers have drawn similar conclusions. Following the
above-mentioned suggestions, parsimonious transfer
function models are developed in the present study.

In equation (3), the term v(B) could have a
large number of weights, v (thus a large number
of time lags). This can present serious estimation
problems, since the size of the sample is always

limited. By reducing the number of parameters, a
parsimonious model can be developed. Thus, the term
v(B) in equation (2) is rewritten in a simpler form as
(Makridakis et al. 1998):

v(B) = ω(B)

δ(B)
Xt−b + Nt (4)

and the parsimonious form of equation (3) becomes:

Yt = C + ω(B)

δ(B)
Xt−b + Nt (5)

where ω(B) = ω0 – ω1B – ω2B2, . . . , – ωsBs and
δ(B) = 1 – δ1B – δ2B2 , . . . , – δrBr, and b, s and r
are constants. Constant b is a delay factor, i.e. a period
of delay, b, before Xt begins to influence Yt. The con-
stant r is the decaying factor of the impulse response
weights, and s is the “dead time” factor.

Feedback checking

The possibility of feedback arises when the inputs are
stochastic, such as in rainfall events (Pankratz 1991,
Box et al. 1994). Although it is unlikely that stream-
flow (output) may affect rainfall (input), a standard
feedback test is desirable. Therefore, to ensure that
there is no feedback from earlier values of the Yt series
to current values of the Xt series, the input series is
regressed on its own past, and on the past of the output
series (Granger and Newbold 1986). Decomposing
the B terms into: B = Xt-1, the regression-lag model
of equation (3) of order k becomes:

Yt = C + v0Xt + v1Xt−1 + v2Xt−2 + . . .

+ vkXt−k + Nt

(6)

To check the feedback effect of the Yt series on the Xt

series, the following equation can be estimated:

Xt = C + b1Xt−1 + b2Xt−2 + · · · + bkXt−k

+ c1Yt−1 + c2Yt−2 + · · · + ckYt−k + Nt

(7)

Using a multiple regression approach, coefficients c1,
c2, . . . , ck can be computed and their significance can
be estimated.
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Hydrological behaviour of a drained agricultural peat catchment 1313

Modelling algorithm

The algorithm proposed by Pankratz (1991) is used
for the development of the TF models. The algorithm
is summarized in the flow chart presented in Fig. 1.

In Step 1, the free-form distributed-lag model
equation of order k can be written, from equation (1),
as:

Yt = C + v0Xt + v1Xt−1 + v2Xt−2 + . . .

+ vkXt−k + Nt

(8)

where v0, v1, . . . , vk are impulse response weights or
TF coefficients and Nt is the noise series. The order
of v(B) is chosen arbitrarily according to their sig-
nificance levels, and the response weight values are
estimated by using the multiple regression approach.

A proxy ARIMA model for the noise series is
used in the TF model (Step 2). The noise series
produced by the distributed-lag model is compared
to that of the proxy model in terms of stationarity.
The best-fitted ARIMA model for the mean monthly
flow series was in the form ARIMA (1,0,0). Thus,
ARIMA (1,0,0) is the proxy noise model used for
the development of a TF model of the rainfall–runoff
relationship, and can be written as:

(1 − φ1B) Yt = C + at (9)

Considering only the noise terms, equation (9)
becomes:

Y t = 1

1 − φ1B
at (10)

where φ1 is the AR(1) parameter and at is the error
series.

A TF model of order k is thus a combination of its
distributed-lag model (equation (6)) and the ARIMA
model of the disturbance series (equation (10)), and
can be written as:

Yt = c + v0Xt + v1Xt−1 + v2Xt−2 + . . .

+ vkXt−k + 1

1 − φ1B
at

(11)

Daily rainfall and streamflow records collected by
the Water Resources Division of the Department of
Irrigation and Drainage, Malaysia, over the period
1983–1993 are used to develop the transfer function
models and simulate the hydrological processes of the
catchment.

1. Specify free-form distributed lag for the dynamic component, v(B)Xt
2. Specify the proxy ARIMA model for noise series, nt

3. Estimate transfer function coefficients from the distributed-lag model
4. Compute and check the estimated disturbance series for stationarity

Is disturbance series stationary?

5. Specify tentative rational lag form of the dynamic component
6. Specify tentative ARIMA model for noise series

7. Estimate final model parameter

8. Check model adequacy using statistical test

Difference in input and output

Model OK?

No

No

Yes

Fig. 1 Flow chart of the transfer function algorithm.
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1314 Ayob Katimon et al.

RESULTS AND DISCUSSION

Transfer function model of the study catchment

Development of the TF model of the mean monthly
rainfall–runoff relationship for the experimental
catchment is discussed below in detail. Figure 2 shows
the monthly rainfall–streamflow series of the study
catchment. The rainfall series, denoted by Pt, is the
input variable, while the streamflow series, Qt, is the
output variable. The rainfall series is the known fac-
tor that affects the runoff series. Assuming the serial
relationship between Pt and Qt of order k, this can be
written as:

Qt = c + v0Pt + v1Pt−1 + v2Pt−2 + . . .

+ vkPt−k + Nt

(12)

Thus, the serial relationship between the past time-lag
series of the present input series and the past output
series can be written as:

Pt = C + b1Pt−1 + b2Pt−2 + . . .

bkPt−k + c1Qt−1 + c1Qt−1 + c2Qt−2

+ · · · + ckQt−k + Nt

(13)

To check the feedback effect of the output series
on the input series, a multiple regression technique
is used to estimate the values of c1, c2, . . . , ck.
Estimated ci values up to the order of 3 are given in
Table 1. It can be seen from Table 3 that, except for
constant C, all the corresponding t values are small
and not significant at the 95% level of confidence.
Therefore, it is very clear that there is no feedback
effect from the past of the output (streamflow) to the
input series (rainfall).

Table 1 Statistical output of feedback effect analysis of the
mean monthly rainfall–streamflow time series

Parameter σ CV t-test Significance, p

C 28.42 5.896 0.000
c1 0.079 0.386 0.611 0.542
c2 0.086 −0.034 0.409 0.683
c3 0.085 0.010 0.123 0.903

Note: σ , standard deviation; CV, coefficient of variation.

A multiple regression model is fitted to the
monthly rainfall–runoff time series to obtain lagged
values. During model fitting, it is assumed that the
noise series Nt belong to an ARIMA (1,0,0) model
and the error series of this proxy model is station-
ary. The fitted multiple regression model to the mean
monthly rainfall–runoff data of lagged values up to
xt−3 is:

Qt = 191.68 + 0.137Pt − 0.0211Pt−1

− 0.059Pt−2 − 0.165Pt−3 + Nt

(14)

The statistical evidence of equation (14) is presented
in Table 2 and the plot of the TF coefficients against
their lags is shown in Fig. 3. It is clear from Fig.
3 that a non-exponential pattern of the decaying
factor exists. Using identification rules proposed by

Table 2 Estimates of TF coefficients and their statistics

Parameter CV Std error t-test Significance, p

C 191.684 47.682 4.020 0.000
v0 0.137 0.073 1.888 0.061
v1 −0.02114 0.073 −0.290 0.772
v2 −0.05906 0.073 −0.809 0.419
v3 −0.165 0.072 −2.278 0.024
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Fig. 2 Mean monthly rainfall–runoff time series of the study catchment.
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Hydrological behaviour of a drained agricultural peat catchment 1315
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Fig. 3 Estimates of TF coefficient showing a decaying
pattern.

Pankratz (1991) and Makridakis et al. (1998), the
following (b,s,r) model order is identified:

– From the p values of Table 2, it is clear that
there is no delay: the first significant coefficient
is at lag 0. Therefore, the model constant b = 0.
This is expected in the case of the mean monthly
rainfall–runoff relationship in hydrology.

– The decay pattern of the coefficient (indicated by
the dotted line) follows a simple exponential decay.
Thus, r = 1.

– Figure 3 shows that the coefficient began to decay
at lag 0. Thus, s = 0.

An error series is thus obtained as:

Nt = Qt − 191.68 − 0.137Pt

+ 0.0211Pt−1 + 0.059Pt−2 + 0.165Pt−3

(15)

Figure 4(a), (b) and (c), respectively, shows the regres-
sion errors, the auto-correlation-function (ACF) plot
and the partial-auto-correlation-function (PACF) plot
of the model of equation (15). It can be seen
from the Nt series ACF and PACF plots that the
significant spikes are at lags 1 and 3. This sug-
gests that AR(1), MA(1), AR(3) or MA(3), or
a combination of ARIMA models could be the
best-fitted model. Nevertheless, using the Aikaike
Information Criterion (AIC) (Makridakis et al. 1998),
the AR(1) model has the smallest AIC value.
Therefore, the ARIMA (1,0,0) model is adopted as
the best-fitted error series for the mean monthly
rainfall–runoff relationship.

With a zero dead time (s = 0), the general form of
the parsimonious model of the full model of equation
(12) can be written as:

Qt = C + ω(B)

δ(B)
Pt−b + Nt (16)

where ω(B) = ω0 – ω1(B) and δ(B) = 1 – δ1B.
Thus:

Qt = C + ω0 − ω1(B)

1 − δ1(B)
Pt + Nt (17)

where Nt = 1/(1 – φ1B)at and at is the error series.
Parameters ω1 and δ1, and constant C are esti-

mated from the initial values of ω0 and φ1 using the
ordinary least square (OLS) method.

Parameter estimation using OLS method

As the objective is to find the best model parameters,
ω0, ω1, δ1, φ1 and C, a best-fitting model is used to
present the input–output relationship. First a prelimi-
nary estimate is chosen and then a computer program
is used to refine the estimate iteratively until the sum
of square errors (SSE) is below a threshold level. For
a regression model with one independent variable, the
estimator can be presented as (Gujarati 1988):

b1 =

n∑
i=1

(X1,i − X )(Yi − Y )

n∑
i=1

(X1,i − X )2

(18)

where X and Y are the sample means of Xi and Yi.
Following practical rules (Makridakis et al.

1998), the initial or range values of ω0 and φ1 are
taken from the regression-lag model (equation (15)).
Thus, the final model of the mean monthly rainfall–
runoff relationship becomes:

Qt = C + ω0 − ω1B

1 − δ1B
Pt + 1

(1 − φ1B)
at (19)

Confidence intervals at 95% can be estimated from
the noise parameters as:

[
Q̂t − 1.96

√
σ 2

a /
(
1 − φ2

)
,

Q̂t + 1.96
√

σ 2
a /

(
1 − φ2

)] (20)

where Q̂t is the simulated streamflow and σ 2
a is the

variance of the noise series, at. The model parameters,
ω0, ω1, δ1, φ1 and C are estimated iteratively using
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Fig. 4 (a) Regression errors from equation (15); (b) ACF plot; and (c) PACF plot.

the ordinary least square (LS) method. Equation (19)
cannot be solved analytically, because it involves non-
linear functions. In the present study, the parameters
are estimated iteratively by using a program written in
MATLAB. The following values of model parameters
are obtained:

C = 159.53
ω0 = 0.1773
ω1 = 0.0010
δ1 = 0.3030
φ1 = 0.2348

where ω(B) is of order zero (s = 0), δ(B) is of order
one (r = 1) and the noise term is ARIMA (1,0,0).
Therefore, the final model can now be written as:

Qt = 159.53 + 0.1773Pt

(1 − 0.3030B)

+ 1

(1 − 0.2348B)
at

(21)

where B = Pt-1 and at is the error series.
The SSE in the prediction by the model is 37.45.

The model coefficient (δ1) also satisfies |δ1| <1, a cri-
terion used to check the stability of a first-order model
(Box et al. 1994). Therefore, it can be considered as a
reasonable model.

Finally, the error series of the model is checked.
Figure 5 shows the histogram plot of the residual
series at from the model of equation (20). As shown

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

iti
 T

ek
no

lo
gi

 M
al

ay
si

a]
 a

t 1
8:

33
 2

7 
D

ec
em

be
r 

20
17

 



Hydrological behaviour of a drained agricultural peat catchment 1317

30

20

10

0

–225.0
–175.0
–125.0
–75.0
–25.0
25.0
75.0
125.0
175.0
225.0
275.0
325.0
375.0
425.0
475.0

Fig. 5 Histogram of residuals from the TF model.

in Fig. 5, the residuals are roughly symmetrical and,
therefore, it can be stated that the error is normally
distributed.

Model interpretation: monthly
rainfall–streamflow relationship

The TF model of the mean monthly rainfall–
streamflow relationship shows that, when rainfall
rises by one unit, runoff responds immediately (b =
0). Runoff rises (ω0 is positive) initially by 0.177 units
(ω0 = 0.177). With subsequent time lags, runoff
rises gradually, but with a decaying amount accord-
ing to the first-order exponential decay pattern, with
a decay coefficient, δ1 = 0.3030. The constant term
(C = 159.53) indicates that the flow series rises by
159.53 units in each time period in addition to any
other movements dictated by the TF or disturbance of
ARIMA pattern.

Evaluation of model performance

The root mean square error (RMSE) and Nash-
Sutcliffe efficiency (NSE) (Nash and Sutcliffe 1970)
are used to examine the model performance. The
RMSE and NSE measure the goodness of fit and are
defined as follows:

RMSE =

√√√√√
N∑

i=1
(Ym − Yo)

2

N
(22)

NSE = 1 −

N∑
i=1

(Yo − Ym)2

N∑
i=1

(
Yo − Yavg

)2
(23)

where Ym is the model predicted discharge, Yo is
the observed discharge, Y avg is the average observed
discharge, and N is the number of data points.

For the TF model (equation (20)) of the mean
monthly rainfall–streamflow relationship, the RMSE
is 31.88 mm. This value is reasonably small.
Figure 6(a) compares the simulated flow obtained by
using the model with the observed flow and Fig. 6(b)
presents a scatter plot of the simulated series vs the
observed series. Figure 6(a) shows that the relation-
ship between the mean monthly rainfall and the mean
daily rainfall is fairly represented by the TF model
of equation (20). Nevertheless, the scatter diagram in
Fig. 6(b) shows that the runoff is under-predicted by
2% with NSE of 0.98. Overall, it can be concluded
that the TF model of the rainfall–runoff relationship
is capable of showing the hydrological dynamics of
the catchment by means of its steady-state function.
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Fig. 6 (a) Plot of observed and modelled monthly stream-
flow series; (b) scatter plot of modelled monthly streamflow
series vs observed series.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

iti
 T

ek
no

lo
gi

 M
al

ay
si

a]
 a

t 1
8:

33
 2

7 
D

ec
em

be
r 

20
17

 



1318 Ayob Katimon et al.

Transfer function models of the daily
rainfall–streamflow relationship

The general TF model of equation (20) is also applied
to simulate daily streamflow from runoff. Transfer
function models of daily rainfall–runoff relationships
for different hydrological years are developed to
examine the changes in the model parameters over the
study period. The TF coefficients or impulse response

functions of the models are regarded as the output
or response at times j ≥ 0 to a unit pulse input at
time 0. According to Box et al. (1994), when there
is no immediate response, one or more of the initial v
values will be equal to zero.

The estimated model order and model parame-
ters for individual years are tabulated in Table 3 and
graphically presented in Fig. 7. Employing the esti-
mated model parameters and the distribution lags of

Table 3 Transfer function model parameters in the different time series

Year Model order Transfer function parameters

b s r ω0 ω1 δ1 C σ

1983 0 1 2 0.0040 0.031 0.243 5.5597 5.59
1984 0 1 2 −0.0254 0.001 0.203 3.7313 3.049
1985 0 0 1 0.0916 −0.109 −0.017 2.2413 0.768
1986 0 1 1 0.0982 −0.459 −0.007 4.4199 3.546
1987 0 1 1 0.0547 −0.079 0.003 2.1535 1.874
1988 0 1 1 0.2210 −0.349 −0.207 1.8381 0.727
1989 0 0 1 0.1538 −0.239 −0.067 1.4077 1.963
1990 0 1 0 0.0682 −0.139 0.003 1.3478 1.809
1991 0 0 1 0.1780 −0.179 0.013 0.8519 1.220
1992 0 1 1 0.3353 −0.499 −0.217 1.7458 1.865
1993 0 1 1 0.0150 −0.109 −0.027 1.3843 1.68
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Fig. 7 Variation of model parameters with time: (a) ω0, (b) ω1 and (c) δ1. (d) Steady-state gain, g, of the transfer function
model.
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Hydrological behaviour of a drained agricultural peat catchment 1319

the impulse response coefficients, the complete TF
model for each hydrological year is developed. For
example, daily rainfall–runoff series relationships for
the years 1983 and 1992, respectively, are best repre-
sented by the TF models given in equations (24) and
(25):

(b,s,r) : (0,1,2), ARIMA (3,1,1)

Yt = 5.59 + (0.004 − 0.03B)

1 − 0.243B − δ2B2
Xt

+ 1(
1 − 0.77B − 0.22B2 − 0.16B3

)at

(24)

(b,s,r) : (0,1,1), ARIMA (2,0,0)

Yt = 1.75 + (0.34 − 0.5B)

1 − 0.22B
Xt

+ 1(
1 − 0.85B + 0.14B2

)at

(25)

The computer-generated plots of simulated series vs
observed series for individual hydrological years are
presented in Fig. 8. Corresponding scatter plots of
simulated values vs observed values for different
hydrological years at 1:1 scale are also given in Fig. 8.
The simulated results demonstrate that the developed
TF models have under-predicted the runoff in almost
all hydrological years, by 4% to 30%, with a NSE
of between 0.5 and 0.98. Nevertheless, the RMSE
values are reasonably small, ranging from 0.7 to
1.8 mm. Therefore, the TF models can be regarded
quite acceptable. Errors in daily rainfall–runoff mod-
els are found higher compared to that in the monthly
rainfall–runoff model. This is due to the smoothness
in monthly data. Usually, monthly streamflow time
series are smoother than daily streamflow time series,
and hydrological models can fit the monthly time
series with less error compared to daily time series.

To test the stability of the models, the values of
model parameters are checked (Pankratz 1991, Box
et al. 1994, Veloce 1996). For a first-order TF model,
if the parameter δ1 ranges between –1 and 1, it can
be regarded as stable model. For the second-order
model, parameters δ1 and δ2 should satisfy the fol-
lowing criteria: δ2 + δ1 < 1; δ2 – δ1 < 1; and
–1 < δ2 < 1.

As indicated by the order (r) of the models
(Table 3), it is obvious that most of the TF models

developed for daily rainfall–runoff belong to first-
order dynamic models, except for the years 1983,
1984 and 1990. For these three hydrological years,
the second-order model seems to be more suitable.
However, as the present modelling effort is focused
on development of a parsimonious model, only first-
order models are considered to show the changes in
model parameters with time. Figure 7(c) shows that
δ1 values of all the models satisfy the condition of sta-
bility. On this count, it can be stated that the models
are capable of predicting daily runoff from rainfall.

Interpretation of the daily rainfall–streamflow
relationship models

A TF model of an input–output series of a catch-
ment system can be represented by a simple block
diagram, as shown in Fig. 9. With rainfall as the
input series and streamflow as the output series, the
dynamic components of the figure can collectively
represent the physical behaviour of the catchment,
such as the rheological properties (e.g. specific yield
and water transmissivity) of the peat materials, as well
as the geometric properties of the basin. The geomet-
ric aspects of the basin that govern the rainfall–runoff
processes include the depth of unsaturated profile, the
peat deposit, and the ground surface configuration.

Thus, the coefficients, ω0, ω1 and δ1 of the TF
models shown in Fig. 9 represent the physical prop-
erties of the system. Analogous to discrete signal
processing theory in control engineering, the impulse
response pattern of the dynamic system represents
the inertia or resistance of the system. Intuitively, the
deviation of the output series, Qt can be regarded as a
linear aggregate of a series of superimposed impulse
response functions scaled by the deviation of the input
series, Pt (Box et al. 1994).

For a first-order discrete TF model, the model
is said to be more stable when |δ1| is close to null.
To interpret the physical meaning of the model input–
output relationship, a steady-state gain (SSG) func-
tion, g is introduced. The SSG of a model is a measure
of sensitivity of the equilibrium level of the output
series to one unit change in the input series. In other
words, the SSG of a dynamic system is defined as the
change in output series divided by the change in input
series when the rate of change in the output series
has reached equilibrium stage. For a stable model,
the SSG can be expressed in terms of model parame-
ters and is defined as (Pankratz 1991, Box et al.1994,
Hipel and McLeod 1994):
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Fig. 8 Computer-generated plots of simulated vs observed series (TF model) for individual hydrological years (left) and
corresponding scatter plots of simulated vs observed at 1:1 scale (right).
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Fig. 8 (Continued).
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g =
∞∑

i=0

vi = ω(1)

δ(1)
(26)

For a first-order model:

v(B) = ω0B

(1 − δ1B)

= ω0
(
1 + δ1B + δ2

1B2 + . . .
)

B

(27)

Considering B as an ordinary algebraic variable, with
B = 1, and substituting it into the above equation, we
can get the simple form of steady-state gain as:

g = ω0

1 − δ1
(28)

And, for example, the steady-state gain for the model
of equation (21) is: g = 0.1771/(1 – 0.3030) = 0.25.
Thus, for this particular example, one unit rise in rain-
fall (Pt) will lead to an eventual equilibrium rise in
runoff (Qt) by 0.25 units. The variation in SSG of the
transfer function model in this study in different years
is presented in Fig. 7(d). The variation is almost iden-
tical to ω0 (Fig. 7(a)). This is expected, because most
of the models are first-order models.

To assess the impacts of rainfall over the model
parameters, the relationships between annual rainfall
and model parameters are analysed. The variation
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Hydrological behaviour of a drained agricultural peat catchment 1323

Fig. 9 Block diagram of an input–output transfer function
model.

of annual rainfall over the study catchment dur-
ing the period 1983–1993 is shown in Fig. 10(a)
and scatter plots of annual rainfall with four model
parameters are shown in Fig. 10(b), (c), (d) and
(e). Correlation analysis using the non-parametric
Kendall-tau method reveals no significant relation-
ship between rainfall and model parameters. The
hydrological response of a catchment to rainfall

depends on many factors, including, for example,
rainfall amount, rainfall intensity, rainfall distribu-
tion and soil moisture condition. Therefore, the above
result does not cancel the influence of rainfall on
model parameters. However, the analysis of rain-
fall, runoff and groundwater level data carried out
in the first part of this study (Katimon et al. 2013)
indicates that drainage has changed the hydrological
behaviour of the catchment. Therefore, it can be stated
that the changes in model parameters may be due to
drainage, as well as to variations in rainfall and other
factors.

It can be seen from Fig. 7(d) that SSG varies from
year to year; it more or less follows a positive expo-
nential trend, at least until the year 1992. This can
be interpreted as: (a) the catchment becoming more
responsive to rainfall; and (b) the time delay of the
streamflow reaching equilibrium stage is increasing.
When related to the storage capacity of the catchment,
this means that the amount of rain water temporarily
stored in the soil is reducing with time.
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1324 Ayob Katimon et al.

CONCLUSIONS

The hydrological behaviour of a catchment depends
on rainfall amount and intensity, and the distri-
bution of rainfall, antecedent soil moisture con-
dition, land cover and many other factors. It is
not possible remove the influence of all these fac-
tors to clearly show the impacts of drainage on
catchment hydrological behaviour. Usually, a paired-
catchment method or pre- and post-drainage data are
required to understand the impact of drainage on
the hydrological behaviour of a catchment. As it is
not possible in the present study area, due to the
absence of paired catchments, and unavailability of
pre-drainage hydrological records, empirical trans-
fer function models were developed to investigate
the changes in the dynamic relationships between
rainfall and streamflow (runoff) of a drained trop-
ical peat catchment. It was found that the mean
monthly rainfall–runoff relationship of the catchment
is best represented by a first-order transfer function
model. The model can reasonably predict streamflow
of the peat catchment from rainfall with a minor
difference in terms of timing and magnitude of the
responses. Transfer function models of daily rainfall–
runoff relationships for each year over the period
1983–1993 were also developed to investigate the
changes in hydrological parameters due to continu-
ous drainage. Differences in the number of parameters
and parameter values in different years may be due to
the difference in climate in individual years. However,
continuous changes in a few hydrological variables
have been observed. It is not possible to come to a
concrete decision about the impacts of drainage on
peat hydrological behaviour with the data available
for the study area. However, quantitative analysis of
storm hydrographs and their relationships with rain-
fall and water table levels presented in the first part
of this study (Katimon et al. 2013) indicates that con-
tinuous drainage over a long period has changed the
hydrological behaviour of the catchment. The present
study also indicates that the catchment has become
more responsive to rainfall, the time delay of the
streamflow to reach equilibrium has become longer,
and the amount of rain water temporarily stored in the
soil has reduced.

Acknowledgements We are grateful to the
Department of Irrigation and Drainage (DID),
Malaysia for providing rainfall and streamflow data.

REFERENCES

Ali, T.B. and Dechemi, N., 2004. Daily rainfall–runoff modelling
using conceptual and black box models; testing a neuro-fuzzy
model. Hydrological Sciences Journal, 49 (5), 919–930.

Astrup, R., Coates, K.D., and Hall, E., 2008. Finding the appropriate
level of complexity for a simulation model: an example with
a forest growth model. Forest Ecology and Management, 256,
1659–1665.

Bell, V.A., Carrington, D.S., and Moore, R.J., 2001. Comparison of
rainfall–runoff models for flood forecasting, Part 2: Calibration
and evaluation of models. Wallingford: Institute of Hydrology
and Bristol: Environment Agency, R&D Technical Report
W242.

Beven, K.J., 1989. Changing ideas in hydrology–the case of
physically-based model. Journal of Hydrology, 105, 157–172.

Beven, K.J., 2012. Rainfall–runoff modelling: The primer. 2nd ed.
Oxford: Wiley-Blackwell.

Box, G.E.P., Jenkins, G.M., and Reisel, G.C., 1994. Time series anal-
ysis forecasting and control. 3rd ed. Englewood Cliffs, NJ:
Prentice Hall.

Brown, A.E., et al., 2005. A review of paired catchment studies for
determining changes in water yield resulting from alterations in
vegetation. Journal of Hydrology, 310 (1–4), 28–61.

Chappell, N., et al 1999. Parsimonious modelling of water and
suspended sediment flux from nested catchments affected by
selective tropical forestry. Philosophical Transactions of the
Royal Society B, 354, 1831–1846.

Granger, C.W.J. and Newbold, P., 1986. Forecasting economic time
series. 2nd ed. San Diego, CA: Academic Press.

Gujarati, D.N., 1988. Basic econometrics. 2nd ed. Singapore:
McGraw-Hill.

Hipel, K.W. and McLeod, A.I., 1994. Time series modeling of water
resources and environmental systems. Amsterdam: Elsevier.

Holden, J., et al., 2006. Impact of land drainage on peatland hydrol-
ogy. Journal Environmental Quality, 35 (5), 1764–1778.

Jakeman, A.J. and Hornberger, G.M., 1993. How much complex-
ity is warranted in a rainfall–runoff model? Water Resources
Research, 29 (8), 2637–2649.

Katimon, A., AbdWahab, A.K., and Melling L., 2002. Understanding
the hydrological behaviour of tropical peat swamps: a key fac-
tor towards its sustainable management. Paper presented at
the Southeast Asian natural resources and environmental man-
agement conference, Kota Kinabalu, Sabah, 17–18 October
2002.

Katimon, A., et al., 2013. Hydrologic behaviour of a drained agricul-
tural peat catchment in the tropics. Part 1: Rainfall, runoff and
water table relationships. Hydrological Sciences Journal, 58 (6)
(this issue).

Langner, A. and Siegert, F., 2009. Spatiotemporal fire occurrence in
Borneo over a period of 10 years. Global Change Biology, 15,
48–62.

Ledolter, J. and Abraham, B., 1981. Parsimony and its importance in
time series forecasting. Technometrics, 23 (4), 411–414.

Lohani, A.K., Goel, N.K., and Bhatia, K.K.S., 2011. Comparative
study of neural network, fuzzy logic and linear transfer function
techniques in daily rainfall–runoff modelling under different
input domains. Hydrological Processes, 25, 175–193.

Makridakis, S., Wheelwright, S.C., and Hyndman, R.J., 1998.
Forecasting methods and application. New York: John Wiley
& Sons.

Mkhandi, S.H. and Kumambala, P.G., 2006. Rainfall–runoff mod-
elling of Bua River basin, Malawi. In: S. Demuth, et al.,
eds. Climate variability and change—hydrological impacts
(Proceedings of the fifth FRIEND world conference, Havana,
Cuba, November 2006). Wallingford: IAHS Press, IAHS Publ.
308, 239–243.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

iti
 T

ek
no

lo
gi

 M
al

ay
si

a]
 a

t 1
8:

33
 2

7 
D

ec
em

be
r 

20
17

 



Hydrological behaviour of a drained agricultural peat catchment 1325

Mutua, F. and Al-Weshah, R., 2005. Rainfall–runoff modeling in
selected catchments in the Lake Victoria basins. International
Conference on FRIEND/Nile: Towards A Better Cooperation,
November 2005, Egypt.

Nash, J.E. and Sutcliffe, J.E., 1970. River flow forecasting through
conceptual models, Part 1—A discussion of principles. Journal
of Hydrology, 10, 282.

Newson, M.D. and Robinson, M., 1983. Effects of agricultural
drainage on upland streamflow: case studies in mid-Wales.
Journal of Environmental Management, 17, 333–348.

Pankratz, A., 1991. Forecasting with dynamic regression models. New
York: John Wiley & Sons.

Robinson, M., 1990. Impact of improved land drainage on river flows.
Wallingford: Institute of Hydrology, Report no. 113.

Romanowicz, R.J., Kiczko, A., and Napiórkowski, J.J., 2010.
Stochastic transfer function model applied to combined reser-
voir management and flow routing. Hydrological Sciences
Journal, 55 (1), 27–40.

Rulli, M.C. and Rosso, R., 2007. Hydrologic response of upland
catchments to wildfires. Advances in Water Resources, 30 (10),
2072–2086.

Schellekens, J., 2000. Hydrological processes in a humid trop-
ical rain forest: a combined experimental and modeling

approach. Thesis (PhD). Vrijie Universiteit, Amsterdam,
The Netherlands.

Skaggs, R.W., 1991. A computer simulation study of Pocosin hydrol-
ogy. Englewood Cliffs, NJ: Prentice Hall.

Veloce, W., 1996. An evaluation of the leading indicators for the
Canadian economy using time series analysis. International
Journal of Forecasting, 12, 403–416.

Wagener, T., et al., 2001. A framework for the development and appli-
cation of hydrological models. Hydrology and Earth System
Sciences, 5, 13–26.

Worrall, F., Gibson, H.S., and Burt, T.P., 2007. Modelling the impact
of drainage and drain-blocking on dissolved organic carbon
release from peatlands. Journal of Hydrology, 338 (1–2),
15–27.

Young, P.C., 2006. Rainfall–runoff modeling: transfer function mod-
els. In: Encyclopedia of hydrological sciences. New York:
Wiley.

Yuan, X., Xie, Z., and Liang, M., 2009. Sensitivity of regionalized
transfer-function noise models to the input and parameter trans-
fer method. Hydrological Sciences Journal, 54 (3), 639–651.

Zhang, X., et al., 2009. Evaluation of global optimization algo-
rithms for parameter calibration of a computationally intensive
hydrologic model. Hydrological Processes, 23, 430–441.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

iti
 T

ek
no

lo
gi

 M
al

ay
si

a]
 a

t 1
8:

33
 2

7 
D

ec
em

be
r 

20
17

 


	Abstract
	Résumé
	INTRODUCTION
	STUDY AREA
	METHODOLOGY
	Model structure
	Parsimonious model structure
	Feedback checking
	Modelling algorithm

	RESULTS AND DISCUSSION
	Transfer function model of the study catchment
	Parameter estimation using OLS method
	Model interpretation: monthly rainfall--streamflow relationship
	Evaluation of model performance
	Transfer function models of the daily rainfall--streamflow relationship
	Interpretation of the daily rainfall--streamflow relationship models

	CONCLUSIONS
	Acknowledgements
	REFERENCES



