International Papers

  1. Rashidi Md. Razali, M. Z. Nashed & Ali Hassan Mohamed Murid, Numerical conformal mapping via the Bergman kernel, Journal of Computational and Applied Mathematics 82 (1)(1997), 333-350.
  2. Ali Hassan Mohamed Murid, M. Z. Nashed &Mohd. Rashidi Md. Razali, Numerical conformal mapping for exterior regions via the Kerzman-Stein kernel, Journal of Integral Equations and Applications 10 (4) (1998), 517-532.
  3. Ali Hassan Mohamed Murid, M. Z. Nashed & Mohd. Rashidi Md. Razali, A domain integral equation for the Bergman kernel, Results in Mathematics 35 (1999), 161-174.
  4. Rashidi Md. Razali, M. Z. Nashed & Ali Hassan Mohamed Murid, Numerical conformal mapping via the Bergman kernel using the generalized minimum residual method, Computers and Mathematics with Applications, 40 (2000), 157-164.
  5. Ali Hassan Mohamed Murid & Mohamed M. S. Nasser, Eigenproblem of the Generalized Neumann Kernel, Bulletin of the Malaysian Mathematical Society (Second Series), 26 (2003), 12-33.
  6. Wegmann, A.H.M. Murid & M.M.S. Nasser, The Riemann-Hilbert problem and the Generalized Neumann Kernel,J. Comput. Appl. Math. 182 (2005) 388-415.
  7. Munira Ismail, Ali Hassan Mohd. Murid & Bahrom B Sanugi, An integral equation approach for the numerical solution of the Riemann problem on a simply connected with corners, Int. J. Simulation and Process Modelling, 2 1/2, (2006) 25-32.
  8. M.S. Nasser, A.H.M. Murid & N.S. Amin, A boundary integral equation for the 2D external potential flow, International Journal of Applied Mechanics and Engineering, 11 No. 1 (2006) 61-75.
  9. Munira Ismail, Ali Hassan Mohamed Murid & Bahrom Sanugi, Numerical solution of the Riemann Problem via boundary integral equation with corners, The International Journal of Pure and Applied Mathematics 313 (2006) 379-400.
  10. Munira Ismail, Ali Hassan Mohd. Murid & Bahrom B Sanugi, Dirichlet problem and non-uniquely solvable Riemann-Hilbert problem via boundary integral equation with corners, International Journal of Applied Mathematics (IJAM), Vol. 20, No. 3, 2007, 403-426.
  11. Ali H. M. Murid & Nurul Akmal Mohammed, An integral equation method for conformal mapping of doubly connected regions via the Kerzman-Stein kernel, International Journal of Pure and Applied Mathematics, Vol. 38, No. 3, 2007,229-250.
  12. Mohamed M.S. Nasser, Ali H.M. Murid & Zamzana Zamzamir, A boundary integral method for the Riemann-Hilbert problem in domains with corners, International Journal of Complex Variables and Elliptic Equations, Vol. 53 (11) (2008) 989-1008. (indexed in the Science Citation Index Expanded)
  13. Ali H. M. Murid and Laey-Nee Hu, Numerical Conformal Mapping of Bounded Multiply Connected Regions by An Integral Equation Method, Int. J. Contemp. Math. Sciences, Vol. 4, 2009, no. 23, 1121-1147. (H-index is 7)
  14. Ali H. M. Murid and Laey-Nee Hu, Numerical Experiment On Conformal Mapping of Doubly Connected Regions Onto A Disk With A Slit, International Journal of Pure and Applied Mathematics, Vol. 51, 2009, no. 4, 589 – 608. (Indexed in Scopus)
  15. M.S. Nasser, A.H.M. Murid, M. Ismail, E. M. A. Alejaily, Boundary Integral Equations with the Generalized Neumann Kernel for Laplace’s Equation in Multiply Connected Regions, Journal in Applied Mathematics and Computation, Vol. 217 (Jan 2011), 4710 – 4727. (IF: 1.125)
  16. W.K. Sangawi, A.H.M. Murid, M.M.S. Nasser, Linear Integral Equations forConformal Mapping of Bounded Multiply Connected Regions onto a Disk with Circular Slits, Appl. Math. Comput., 218(5) (2011), pp. 2055-2068. (Impact Factor: 1.534) DOI: 10.1016/j.amc.2011.07.018
  17. W.K. Sangawi, A.H.M. Murid, M.M.S. Nasser, Parallel slits map of bounded multiply connected regions, Journal of Mathematical Analysis and Applications, 389 (2012) 1280–1290. (Impact Factor: 1.174)
  18. W.K. Sangawi, A.H.M. Murid, M.M.S. Nasser, Annulus with Circular Slit Map of Bounded Multiply Connected Regions via Integral Equation Method, Bull. Malays. Math. Sci. Soc. (2) 35 (4) (2012) 945-959. (Impact Factor: 0.696 )
  19. W.K. Sangawi, A.H.M. Murid, M.M.S. Nasser, Circular Slits Map of Bounded Multiply Connected Regions, in “Trends in Classical Analysis, Geometric Function Theory, and Geometry of Conformal Invariants”, a special issue of Journal of Abstract and Applied Analysis, vol. 2012,(2012), Article ID 970928, 26 pages. doi:10.1155/2012/970928. (Impact Factor: 1.442)
  20. A. M. Yunus, Ali H. M. Murid & M. M. S. Nasser, Conformal Mapping of Unbounded Multiply Connected Regions onto Canonical Slit Regions, in “Trends in Classical Analysis, Geometric Function Theory, and Geometry of Conformal Invariants”, a special issue of Journal of Abstract and Applied Analysis, Volume 2012, Article ID 293765, 29 pages, doi:10.1155/2012/293765. (Impact Factor: 1.318)
  21. M. S. Nasser, Ali H.M. Murid & Samer A.A. Al-Hatemi, A Boundary Integral Equation with the Generalized Neumann Kernel for a Certain Class of Mixed Boundary Value Problem, Journal of Applied Mathematics, Volume 2012, Article ID 254123, 17 pages, doi:10.1155/2012/254123. (IF: 0.656)
  22. Samer A.A. Al-Hatemi, Ali H.M. Murid and Mohamed M.S. Nasser, A boundary integral equation with the generalized Neumann kernel for a mixed boundary value problem in unbounded multiply connected regions, Boundary Value Problems 2013, 2013:54, doi:10.1186/1687-2770-2013-54 (IF: 0.91) ) (indexed by ISI, SCOPUS and several other databases)
  23. Ali W. K. Sangawi, Ali H. M. Murid & M. M. S. Nasser, Radial Slit Maps of Bounded Multiply Connected Regions, Journal of Scientific Computing, (2013) 55:309–326, doi: 10.1007/s10915-012-9634-3. (IF: 1.557) (indexed by ISI, SCOPUS and several other databases)
  24. Amir S.A. Hamzah, Ali H.M. Murid, and Mohamed M.S. Nasser, Boundary Integral Equations with the Generalized Neumann kernel for Robin problem in Simply Connected Region, J. Appl. Math. & Stat., Vol. 44, No. 14 (2013) 8-20. (Indexed in SCOPUS).
  25. Ali W. K. Sangawi and Ali H. M. Murid, Annulus with Spiral Slits Map and its Inverse of Bounded Multiply Connected Regions, International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October (2013) 1447-1454.
  26. Mohamed M.S. Nasser and Ali H.M. Murid, A boundary integral equation with the generalized Neumann kernel for the Ahlfors map, Int. J. Clifford Analysis, Clifford Algebras and their Applications (CACAA), Vol 2 (4) (2013), pp. 307-312. (Indexed in Current Mathematics Publications, Mathematical Reviews, MathCAD, USSR Academy of Sciences and Zentralblatt fur Mathematic/Mathematics Abstracts/MATH Database)
  27. Mohamed M.S. Nasser, Ali H.M. Murid and Ali W.K. Sangawi, Numerical conformal mapping via a boundary integral equation with the adjoint generalized Neumann kernel, TWMS J. Pure Appl. Math. V.5, N.1, 2014, pp.96-117.
  28. Arif A. M. Yunus, Ali H. M. Murid & M. M. S. Nasser, Numerical Evaluation of Conformal Mapping and its Inverse for Unbounded Multiply Connected Regions, Bulletin of Malaysian Mathematical Sciences Society (2). 37 No. 1 (2014) 1-24 (Impact Factor: 0.798) (indexed by ISI, SCOPUS and several other databases)
  29. Arif A. M. Yunus, Ali H. M. Murid & M. M. S. Nasser, Numerical conformal mapping and its inverse of unbounded multiply connected regions onto logarithmic spiral slit regions and straight slit regions, e-print Proceedings of Royal Society A 2014 470, 20130514. (2012 Impact Factor 2.378) (indexed by ISI, SCOPUS and several other databases) doi:1098/rspa.2013.0514. (GUP Q.J130000.2526.04H62, Q.J130000.2426.01G11)
  30. Aghaeiboorkheilia and Ali H.M. Murid, Solving the Dirichlet problem with discontinuous coecients in bounded multiply connected regions using a boundary integral equation with the generalized Neumann kernel, International Journal of Pure and Applied Mathematics (IJPAM), ISSN 1311-8080, Vol. 97, No. 4, 2014, 447-479.
  31. Siti Zulaiha Aspon, Ali Hassan Mohamed Murid, Mohamed M. S. Nasser and Hamisan Rahmat, Integral Equation Approach for Computing Green’s Function on Doubly Connected Regions via the Generalized Neumann Kernel, Jurnal Teknologi, Vol. 71, No. 1 (2014) 49–54. (indexed by SCOPUS)
  32. Mohamed M.S. Nasser, Takashi Sakajo, Ali H.M. Murid, and Lee Khiy Wei, A fast computational method for potential flows in multiply connected coastal domains, Japan Journal of Industrial and Applied Mathematics, Vol. 32, No. 1, 2015 (2013 Impact Factor: 0.269) (indexed by ISI) DOI 10.1007/s13160-015-0168-6.
  33. Kashif Nazar, Ali H. M. Murid, and Ali W. K. Sangawi, Integral Equation for the Ahlfors Map on Multiply Connected Regions, Jurnal Teknologi, Vol. 73 No. 1 (2015) 1–9. (indexed by SCOPUS)
  34. Somchai Nuanprasert, Khiy Wei Lee, Ali H. M. Murid, Sueki Baba and Takashi Suzuki, Enhancement of BGA void defect detection in poor contrast Xray images using conformal mapping, ICIC Express Letters, Part B: Applications, Volume 7, Number 1, January (2016) 105-110.

National Papers

  1. Ali Hassan Mohamed Murid, Two reduction formulas for Appell’s Function F1, Matematika 4 (1988), no. 2, 229-236 (in Malay).
  2. Ali Hassan Mohamed Murid, Mellin-Barnes integrals involving Carlson’s function, Matematika 5 (1989), no. 1, 37-53 (in Malay).
  3. Ali Hassan Mohamed Murid, A q-analogue problem for Carlson’s R function, Matematika 5 (1989), no. 2, 149-158 (in Malay).
  4. Ali Hassan Mohamed Murid, q-analogues for linear ransformations of Rn polynomials, Matematika 7 (1991), no. 1, 39-47 (in Malay).
  5. Mohd. Rashidi Md. Razali & Ali Hassan Mohamed Murid, Biorthogonality andreproducing property, Matematika 11 (1995), no. 1, 1-10 (in Malay).
  6. Mohd. Rashidi Md. Razali & Ali Hassan Mohamed Murid, An integral equation method for numerical conformal mapping of exterior regions, Matematika 12 (1996), no. 1, 29-39 (in Malay).
  7. Ali Hassan Mohamed Murid & Mohd. Rashidi Md. Razali, An integral equation method for conformal mapping of doubly-connected regions, Matematika 15 (1999), no. 2, 79-93.
  8. Baharudin Hurmin & Ali Hassan Mohamed Murid, Pemetaan konformal daerah banyak segi melalui persamaan kamiran terhadap inti Bergman dan inti Szego, Matematika 20 (2004), no. 1, 49-68.
  9. Ali Hassan Mohamed Murid, Mohamed M.S. Nasser & Norsarahaida S. Amin, A boundary integral method for the planar external potential flow around airfoils. Jurnal Teknologi C 42 (Jun 2005) 29-42.
  10. Ali Hassan Mohamed Murid, Mohamed M.S. Nasser & Norsarahaida S. Amin, A boundary integral method for the planar external potential flow around airfoils. Jurnal Teknologi C 42 (Jun 2005) 29-42.
  11. Murid, A. H. M., Hu, L. N. and Mohamad, M. N. (2008). An Integral Equation Method For Conformal Mapping of Doubly Connected Regions Involving The Neumann Kernel. Matematika, Vol. 24, No. 2 (2008), 99-111.
  12. Zamzana Zamzamir, Munira Ismail & Ali H. M. Murid, An Integral Equation Related to the Exterior Riemann-Hilbert Problem on Region with Corners, Journal of Fundamental Sciences, Vol. 4 (2008) 369-378.
  13. Munira Ismail, Ali Hassan Mohamed Murid & Bahrom Sanugi, Improved Boundary Integral Equation for Dirichlet Problem on Region with Corners, Matematika (Special Edition), Part 1 (2008), 307-314.
  14. Murid, A. H. M., Hu, L. N. and Mohamad, M. N. (2008). Numerical Conformal Mapping of Doubly Connected Regions Onto a Disc With a Circular Slit. Journal of Quality Measurement and Analysis, Vol. 4 No. 2, December 2008, 29-38.
  15. Ali Hassan Mohamed Murid & Teh Yuan Ying, Numerical conformal mapping via a Fredholm integral equation using Fourier method, Malaysian Journal of Mathematical Sciences, Vol.3, No. 1 (2009): 83-93.
  16. Ali H.M. Murid, Ali W. Kareem Sangawi, and M.M.S Nasser, Integral and Differential Equations for Conformal Mapping of Bounded Multiply Connected Regions onto a Disk with Circular Slits, Journal of Fundamental Sciences, Vol. 7, No. 1, 2011, 12 –
  17. Arif. A. M. Yunus, Ali H. M. Murid & M. M. S. Nasser, Numerical Conformal Mapping of Unbounded Multiply Connected Regions onto Circular Slit Regions, Malaysian Journal of Fundamental and Applied Sciences, Vol.8, No.1 (2012) 38-43.
  18. Samer A. A. Alhatemi, Ali H. M. Murid & M. M. S. Nasser, Solving Mixed Boundary Value Problem via an Integral Equation with the Generalized Neumann Kernel on Unbounded Multiply Connected Region, Malaysian Journal of Fundamental and Applied Sciences, Vol. 8, No.4 (2012) 177-181.
  19. Ali H. M. Murid, Mohmed M. A. Alagele, and Mohamed M. S. Nasser, Integral Equation with the Generalized Neumann Kernel for Computing Green’s function on Simply Connected Regions, Malaysian Journal of Fundamental and Applied Sciences, Vol. 9, No 3 (2013) 161-166.
  20. Lee Khiy Wei, Ali H. M. Murid and Yeak Su Hoe, Conformal Mapping and Periodic Cubic Spline Interpolation, MATEMATIKA, 2014, Volume 30, Number 1a, 8–20.
Research Ecosystem
Universiti Teknologi Malaysia UTM Nexus - Research & Innovation

Office of Deputy Vice Chancellor (Research & Innovation)

DVCRI Profile Johor Bahru Office Kuala Lumpur Office

Higher Institution Centre of Excellence (HI-COE)

Advance Membrane Technology Research Centre - AMTEC Institute of Noise & Vibration - INV Wireless Communication Centre - WCC

Research Institute

Centre of Excellence (COE)

Institute of High Voltage & High Current - IVAT UTM-MPRC Institue for Oil & Gas - IFOG Centre for Artificial Intelligence & Robotics - CAIRO Centre for Engineering Education - CEE Centre for Advanced Composite Materials - CACM Innovation Centre in Agritechnology for Advanced Bioprocessing - ICA Institute of Bioproduct Development - IBD

Service Entity

Research Management Centre - RMC Penerbit UTM Press Centre for Community & Industry Network - CCIN Innovation & Commercialisation Centre - ICC University Laboratory Management Centre - PPMU Institut Sultan Iskandar - UTM-ISI

Get the latest news & events

Customer Satisfaction Index