Imagine a local power grid, a microgrid, efficiently supplying electricity to homes and businesses. Now, picture it doing so with minimal energy waste and optimized costs. Researchers at Universiti Teknologi Malaysia (UTM) are making this vision a reality with a novel approach to reactive power compensation in electric microgrids.
The research tackles a common challenge in electrical grids: reactive power. Reactive power is the unused electricity circulating back to the source, which increases strain on the grid, increases costs and lowers the efficiency of the power grid, preventing real or active power from performing work. In essence, the UTM team developed a method to optimally place and size fixed capacitor banks within a 14-bus microgrid. These capacitor banks act like filters, counteracting the reactive power and improving overall system performance.
To determine the best capacitor placement, the researchers considered multiple factors simultaneously using a multicriteria decision algorithm. Cost, efficiency, and power quality were all weighed to find the optimal solution. The algorithm also took into account varying demand scenarios, from maximum to minimum load, ensuring the solution was robust across different operating conditions. This approach moves beyond traditional methods that often focus on a single objective, providing a more holistic and practical solution.
The team simulated their approach using Matlab and Simulink, analyzing key variables such as voltage profile deviations, power factor, total system losses, and total harmonic distortion (THD). The results demonstrated significant improvements across all these metrics, highlighting the effectiveness of the proposed technique. By optimizing these factors, the research paves the way for more efficient, reliable, and cost-effective microgrids.
This approach represents a significant advancement in the field, offering a novel tool for calculating the location and dimensioning of reactive compensation devices in distribution systems and microgrids. The UTM team’s work provides a blueprint for optimizing reactive power in real-world microgrids, leading to more sustainable and resilient energy solutions. Future research could explore the application of this methodology to larger and more complex grid systems, as well as investigate the use of dynamic compensation devices for even greater flexibility and control.