M Rezaei-DashtArzhandi, MH Sarrafzadeh, PS Goh, WJ Lau, AF Ismail, MA Mohamed

In this study, thin film nanocomposite (TFN) membranes were fabricated by incorporating highly hydrophilic halloysite nanotubes (HNTs) and self-synthesized graphitic carbon nitride (g-C3N4) nanoparticles into polysulfone-based substrate and interfacially polymerized polyamide top layer, respectively. The TFN membranes were evaluated for their performance in forward osmosis (FO) applications. The XRD, ATR-FTIR, FESEM and TEM results confirmed the successful synthesis of g-C3N4 nanoparticles. The effects of nanomaterials incorporation were investigated in terms of membrane surface morphology, hydrophilicity and separation performance. When 0.05 wt/v% of g-C3N4 was added to the polyamide layer, the membrane surface contact angle was significantly reduced from 68° in the control membrane (TFN0.0) to <10° in the TFN membrane (TFN0.05), leading to high water flux of 18.88 L/m2·h …


Research Ecosystem
Universiti Teknologi Malaysia UTM Nexus - Research & Innovation

Office of Deputy Vice Chancellor (Research & Innovation)

DVCRI Profile Johor Bahru Office Kuala Lumpur Office

Higher Institution Centre of Excellence (HI-COE)

Advance Membrane Technology Research Centre - AMTEC Institute of Noise & Vibration - INV Wireless Communication Centre - WCC

Research Institute

Centre of Excellence (COE)

Institute of High Voltage & High Current - IVAT UTM-MPRC Institue for Oil & Gas - IFOG Centre for Artificial Intelligence & Robotics - CAIRO Centre for Engineering Education - CEE Centre for Advanced Composite Materials - CACM Innovation Centre in Agritechnology for Advanced Bioprocessing - ICA Institute of Bioproduct Development - IBD

Service Entity

Research Management Centre - RMC Penerbit UTM Press Centre for Community & Industry Network - CCIN Innovation & Commercialisation Centre - ICC University Laboratory Management Centre - PPMU Institut Sultan Iskandar - UTM-ISI

Get the latest news & events

Customer Satisfaction Index